CPLUOS Astrophysics team meeting

Asia/Seoul
물리학과

물리학과

Zoom Meeting https://uos-ac-kr.zoom.us/j/8264902652 Meeting ID: 826 490 2652
Description

https://uos-ac-kr.zoom.us/j/8264902652

    • 16:30 17:45
      COSMOLOGY
      • 16:30
        Dr.Sangnam Park's Report - FDM_Offset 15m
        Speaker: Sangnam Park
      • 16:45
        Hyeonmo's report - CDM Halo Evolution for Gadget2 Simulation 15m
        Speaker: Hyeonmo Koo (University of Seoul)
        • Setting CDM Halo
          • Setting Radius and Half-mass Radius
            • M(r_h) = (1/2)M(R)
            • r_h = 1.51a
          • Setting Rotational Velocity
            • v(r) = (1-ϵ/175)((G(M)/r)^(1/2))
            • When ϵ > 0, damping occurs in the half-mass radius to cancel the gradual increase in the half-mass radius after relaxation.
            • In Time[Gadget Unit] vs r_(1/2)[kpc] graph, 1.0 <= ϵ <= 3.0
          • Displacement of Center of Mass(COM)
            • Average of COM shifts for 50 halos for each ϵ
              • Zeroth Evolution
              • First Evolution
          • Half-Mass Radius Evolution
            • Zeroth Evolution
            • First Evolution
          • Conclusion
            • ϵ = 2.5
      • 17:00
        Young's report. FoF and MST algorithm 15m
        Speaker: Young Ju

        Random Data

        • Comparison of Clustering Finding Algorithms in Random Data
          • 4 algorithms
            • MGS : fResolution = 10
            • MST : Linking length = 10
            • DBSCAN: eps = 10, min_samples = 10
            • Hierarchical : distance_threshold = 10
          • Results of clustering
            • (n, MGS, MST, DBSCAN, Hierarchical)
              • (1, 49, 50, 49, 49)
              • (2, 49, 50, 49, 49)
              • (4, 47, 50, 46, 46)
              • (6, 47, 48, 43, 43)
              • (8, 48, 48, 42, 42)
              • (10, 47, 44, 40, 40)
          • Results
            • 1. Result of simulated data with standard deviation = 1
            • 2. Result of simulated data with standard deviation = 2
            • 3. Result of simulated data with standard deviation = 4
            • 4. Result of simulated data with standard deviation = 6
            • 5. Result of simulated data with standard deviation = 8
            • 6. Result of simulated data with standard deviation = 10

        Noise Data

        • Comparison of Clustering Finding Algorithms in Noise Data
          • 4 algorithms
            • MGS : fResolution = 10
            • MST : Linking length = 10
            • DBSCAN: eps = 10, min_samples = 10
            • Hierarchical : distance_threshold = 10
          • Noise = 1000
            • (minimum number, MGS, MST, DBSCAN, Hierarchical)
              • (3, 81, 76, 40, 71)
              • (10, 47, 44, 40, 39)
              • (20, 47, 44, 40, 39)
              • (50, 47, 44, 40, 39)
          • Noise = 5000
            • (minimum number, MGS, MST, DBSCAN, Hierarchical)
              • (3, 570, 228, 40, 226)
              • (10, 140, 57, 39, 55)
              • (20, 54, 30, 39, 28)
              • (50, 47, 18, 39, 16)
          • Noise = 10000
            • (minimum number, MGS, MST, DBSCAN, Hierarchical)
              • (3, 616, 27, 167, 27)
              • (10, 357, 1, 148, 1)
              • (20, 157, 1, 66, 1)
              • (50, 52, 1, 33, 1)
          • Noise = 50000
            • (minimum number, MGS, MST, DBSCAN, Hierarchical)
              • (3, 504, 1, 1, 1)
              • (10, 480, 1, 1, 1)
              • (20, 459, 1, 1, 1)
              • (50, 346, 1, 1, 1)
              • From 50000 noise data, only MGS computed small clusters. The other three algorithms returned erroneous results where one huge cluster contained all data points.
      • 17:15
        CHOA(Cosmology of High-Order Statistics) 15m
        Speaker: Se Yeon Hwang
      • 17:30
        Dr.Sabiu's Report - 21cm paper referee report 15m
        Speaker: Dr Cristiano Sabiu (University of Seoul)
    • 17:45 17:55
      Discussion 10m