
2025.08.25

MET Algorithm Workflow
for CMS Phase-II Level-1 Trigger

Junwon Oh

2

Contents

• HL-LHC and CMS Phase-II Upgrade

• CMS Level-1 Trigger system

• HLS workflow

• Missing Transverse Energy Algorithm for Level-1 Trigger system

• Optimizations

• Implementations

3

Collision Energy
Interactions
per bunch
crossing

Instantaneous
Luminosity

Ex) ggF
Higgs Cross-

section

Run3
(Current)

13.6TeV
60 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑠
× 40𝑀𝐻𝑧

2 × 1034𝑐𝑚−2 ∙ 𝑠−1

2 × 10−5𝑓𝑏−1 ∙ 𝑠−1
46.67 pb

HL-LHC
(2026~)

14TeV
200 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑠
× 40𝑀𝐻𝑧

5~7.5 × 1034𝑐𝑚−2 ∙ 𝑠−1

5~7.5 × 10−5𝑓𝑏−1 ∙ 𝑠−1
50.35pb

1𝑏𝑎𝑟𝑛 = 1𝑏 = 10−28𝑚2
𝑔𝑔𝐹 𝐻𝑖𝑔𝑔𝑠 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛
2 × 10−5𝑓𝑏−1 ∙ 𝑠−1 × 46.67𝑝𝑏
= 0.9334 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑

HL-LHC and CMS Phase-II Upgrade

4

CMS Level-1 Trigger system

• The Level-1 (L1) Trigger is the first stage in filtering data from collisions in
CMS detector.

• L1 Trigger decisions are made within a few microseconds, operating under
strict time constraints.

• Specialized hardware, such as FPGAs, is used to ensure fast and parallel data
processing.

• The primary goal is to retain high-energy events while discarding low-
relevance data.

5

CMS Level-1 Trigger system

6

CMS Level-1 Trigger system

7

CMS Level-1 Trigger system

Correlator Trigger (CT) – Major part of L1 Trigger Upgrade
• Aggregating inputs from all upstream systems for L1 physics objects
• The CT will be capable of providing essential physics objects

- Missing Transverse Momentum (MET),
- Jets and their tagging information based on the PF (Particle Flow)

or PUPPI (Pileup Per Particle Identification) candidates

8

TMUX

New Events every 25 ns (40 MHz)

9

TMUX

evt0 evt5evt2 evt3 evt4evt1

Now we can take every new events
every 25 ns * 6 = 150 ns!

10

HLS workflow

• Start from C/C++ descriptions of the algorithm.

• High-Level Synthesis (HLS) automatically converts it

into RTL (Verilog/VHDL).

• RTL can then be implemented on FPGA hardware.

• This approach avoids manual hardware coding,

which is difficult for physicists.

• Widely used in our field to speed up development

on FPGAs.

11

Missing Transverse Energy Algorithm for Level-1 Trigger system

PUPPI MET
: Pileup Per Particle Identification MET
- PUPPI algorithm improves the identification of particles.
- MET serves as a proxy for invisible particles.
- Calculate the negative sum of particles’ momenta

𝒑𝑻
𝒎𝒊𝒔𝒔 = −𝚺𝒑𝒂𝒓𝒕𝒊𝒄𝒍𝒆𝒔𝒑𝑻

12

MET Algorithm for Level-1 Trigger system

……

−Σ𝑝𝑥, −Σ𝑝𝑦

𝑝𝑥
2 + 𝑝𝑦

2 𝑎𝑡𝑎𝑛2(𝑝𝑦, 𝑝𝑥)

𝑀𝐸𝑇 𝑃𝑇 𝑀𝐸𝑇 𝜙

𝑃𝑥
= 𝑃𝑇 × 𝑐𝑜𝑠𝜙
𝑃𝑦
= 𝑃𝑇 × 𝑠𝑖𝑛𝜙

𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠’
𝑝𝑇 &𝜙

𝑃𝑥
= 𝑃𝑇 × 𝑐𝑜𝑠𝜙
𝑃𝑦
= 𝑃𝑇 × 𝑠𝑖𝑛𝜙

𝑃𝑥
= 𝑃𝑇 × 𝑐𝑜𝑠𝜙
𝑃𝑦
= 𝑃𝑇 × 𝑠𝑖𝑛𝜙

𝑃𝑥
= 𝑃𝑇 × 𝑐𝑜𝑠𝜙
𝑃𝑦
= 𝑃𝑇 × 𝑠𝑖𝑛𝜙

𝑃𝑥
= 𝑃𝑇 × 𝑐𝑜𝑠𝜙
𝑃𝑦
= 𝑃𝑇 × 𝑠𝑖𝑛𝜙

𝑃𝑥
= 𝑃𝑇 × 𝑐𝑜𝑠𝜙
𝑃𝑦
= 𝑃𝑇 × 𝑠𝑖𝑛𝜙

……

𝑃𝑥
= 𝑃𝑇 × 𝑐𝑜𝑠𝜙
𝑃𝑦
= 𝑃𝑇 × 𝑠𝑖𝑛𝜙

𝑃𝑥
= 𝑃𝑇 × 𝑐𝑜𝑠𝜙
𝑃𝑦
= 𝑃𝑇 × 𝑠𝑖𝑛𝜙

𝑝𝑥
= 𝑝𝑇 × 𝑐𝑜𝑠𝜙
𝑝𝑦
= 𝑝𝑇 × 𝑠𝑖𝑛𝜙

Input

Projection

Vector sum

Convert to pT, phi

13

MET Algorithm for Level-1 Trigger system

……

−Σ𝑝𝑥, −Σ𝑝𝑦

𝑝𝑥
2 + 𝑝𝑦

2 𝑎𝑡𝑎𝑛2(𝑝𝑦, 𝑝𝑥)

𝑀𝐸𝑇 𝑃𝑇 𝑀𝐸𝑇 𝜙

𝑃𝑥
= 𝑃𝑇 × 𝑐𝑜𝑠𝜙
𝑃𝑦
= 𝑃𝑇 × 𝑠𝑖𝑛𝜙

𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠’
𝑝𝑇 &𝜙

𝑃𝑥
= 𝑃𝑇 × 𝑐𝑜𝑠𝜙
𝑃𝑦
= 𝑃𝑇 × 𝑠𝑖𝑛𝜙

𝑃𝑥
= 𝑃𝑇 × 𝑐𝑜𝑠𝜙
𝑃𝑦
= 𝑃𝑇 × 𝑠𝑖𝑛𝜙

𝑃𝑥
= 𝑃𝑇 × 𝑐𝑜𝑠𝜙
𝑃𝑦
= 𝑃𝑇 × 𝑠𝑖𝑛𝜙

𝑃𝑥
= 𝑃𝑇 × 𝑐𝑜𝑠𝜙
𝑃𝑦
= 𝑃𝑇 × 𝑠𝑖𝑛𝜙

𝑃𝑥
= 𝑃𝑇 × 𝑐𝑜𝑠𝜙
𝑃𝑦
= 𝑃𝑇 × 𝑠𝑖𝑛𝜙

……

𝑃𝑥
= 𝑃𝑇 × 𝑐𝑜𝑠𝜙
𝑃𝑦
= 𝑃𝑇 × 𝑠𝑖𝑛𝜙

𝑃𝑥
= 𝑃𝑇 × 𝑐𝑜𝑠𝜙
𝑃𝑦
= 𝑃𝑇 × 𝑠𝑖𝑛𝜙

𝑝𝑥
= 𝑝𝑇 × 𝑐𝑜𝑠𝜙
𝑝𝑦
= 𝑝𝑇 × 𝑠𝑖𝑛𝜙

Input

Projection

Vector sum

Convert to pT, phi

14

Optimizations

𝑃𝑥
= 𝑃𝑇 × 𝑐𝑜𝑠𝜙
𝑃𝑦
= 𝑃𝑇 × 𝑠𝑖𝑛𝜙

𝑃𝑥
= 𝑃𝑇 × 𝑐𝑜𝑠𝜙
𝑃𝑦
= 𝑃𝑇 × 𝑠𝑖𝑛𝜙

𝑃𝑥
= 𝑃𝑇 × 𝑐𝑜𝑠𝜙
𝑃𝑦
= 𝑃𝑇 × 𝑠𝑖𝑛𝜙

𝑃𝑥
= 𝑃𝑇 × 𝑐𝑜𝑠𝜙
𝑃𝑦
= 𝑃𝑇 × 𝑠𝑖𝑛𝜙

𝑃𝑥
= 𝑃𝑇 × 𝑐𝑜𝑠𝜙
𝑃𝑦
= 𝑃𝑇 × 𝑠𝑖𝑛𝜙

𝑃𝑥
= 𝑃𝑇 × 𝑐𝑜𝑠𝜙
𝑃𝑦
= 𝑃𝑇 × 𝑠𝑖𝑛𝜙

𝑃𝑥
= 𝑃𝑇 × 𝑐𝑜𝑠𝜙
𝑃𝑦
= 𝑃𝑇 × 𝑠𝑖𝑛𝜙

𝑃𝑥
= 𝑃𝑇 × 𝑐𝑜𝑠𝜙
𝑃𝑦
= 𝑃𝑇 × 𝑠𝑖𝑛𝜙

𝑝𝑥
= 𝑝𝑇 × 𝑐𝑜𝑠𝜙
𝑝𝑦
= 𝑝𝑇 × 𝑠𝑖𝑛𝜙

Projection

WIKI

How can we implement trigonometric functions on FPGA?
Typically, the CORDIC algorithm is used. However…

• Iteratively rotates a vector by predefined angles.

• Each iteration refines the approximation of sine and cosine.

• Requires many sequential loop steps for high precision.

• This sequential nature leads to longer latency on FPGA.

https://en.wikipedia.org/wiki/CORDIC

15

Optimizations

𝑃𝑥
= 𝑃𝑇 × 𝑐𝑜𝑠𝜙
𝑃𝑦
= 𝑃𝑇 × 𝑠𝑖𝑛𝜙

𝑃𝑥
= 𝑃𝑇 × 𝑐𝑜𝑠𝜙
𝑃𝑦
= 𝑃𝑇 × 𝑠𝑖𝑛𝜙

𝑃𝑥
= 𝑃𝑇 × 𝑐𝑜𝑠𝜙
𝑃𝑦
= 𝑃𝑇 × 𝑠𝑖𝑛𝜙

𝑃𝑥
= 𝑃𝑇 × 𝑐𝑜𝑠𝜙
𝑃𝑦
= 𝑃𝑇 × 𝑠𝑖𝑛𝜙

𝑃𝑥
= 𝑃𝑇 × 𝑐𝑜𝑠𝜙
𝑃𝑦
= 𝑃𝑇 × 𝑠𝑖𝑛𝜙

𝑃𝑥
= 𝑃𝑇 × 𝑐𝑜𝑠𝜙
𝑃𝑦
= 𝑃𝑇 × 𝑠𝑖𝑛𝜙

𝑃𝑥
= 𝑃𝑇 × 𝑐𝑜𝑠𝜙
𝑃𝑦
= 𝑃𝑇 × 𝑠𝑖𝑛𝜙

𝑃𝑥
= 𝑃𝑇 × 𝑐𝑜𝑠𝜙
𝑃𝑦
= 𝑃𝑇 × 𝑠𝑖𝑛𝜙

𝑝𝑥
= 𝑝𝑇 × 𝑐𝑜𝑠𝜙
𝑝𝑦
= 𝑝𝑇 × 𝑠𝑖𝑛𝜙

Projection

Look Up Table (LUT)

• LUT is one of the easiest and efficient way to
express any functions by saving values as
numerical tables in the hardware

• We set 512 points for the sin & cos functions
• Lower latency and smaller resource usage than

the HLS math library in trade-off of numerical
precision

Polynomial Interpolation

• Trigonometric functions can be approximated
with piecewise polynomial

• We used 1st & 2nd order polynomial
interpolation algorithms and set 16 points on
sin & cos functions

• The resource usage and latency are better than
the HLS math library

• The precision is significantly improved

16

Optimizations

𝑃𝑥
= 𝑃𝑇 × 𝑐𝑜𝑠𝜙
𝑃𝑦
= 𝑃𝑇 × 𝑠𝑖𝑛𝜙

𝑃𝑥
= 𝑃𝑇 × 𝑐𝑜𝑠𝜙
𝑃𝑦
= 𝑃𝑇 × 𝑠𝑖𝑛𝜙

𝑃𝑥
= 𝑃𝑇 × 𝑐𝑜𝑠𝜙
𝑃𝑦
= 𝑃𝑇 × 𝑠𝑖𝑛𝜙

𝑃𝑥
= 𝑃𝑇 × 𝑐𝑜𝑠𝜙
𝑃𝑦
= 𝑃𝑇 × 𝑠𝑖𝑛𝜙

𝑃𝑥
= 𝑃𝑇 × 𝑐𝑜𝑠𝜙
𝑃𝑦
= 𝑃𝑇 × 𝑠𝑖𝑛𝜙

𝑃𝑥
= 𝑃𝑇 × 𝑐𝑜𝑠𝜙
𝑃𝑦
= 𝑃𝑇 × 𝑠𝑖𝑛𝜙

𝑃𝑥
= 𝑃𝑇 × 𝑐𝑜𝑠𝜙
𝑃𝑦
= 𝑃𝑇 × 𝑠𝑖𝑛𝜙

𝑃𝑥
= 𝑃𝑇 × 𝑐𝑜𝑠𝜙
𝑃𝑦
= 𝑃𝑇 × 𝑠𝑖𝑛𝜙

𝑝𝑥
= 𝑝𝑇 × 𝑐𝑜𝑠𝜙
𝑝𝑦
= 𝑝𝑇 × 𝑠𝑖𝑛𝜙

Projection

𝜙

sin table

cos table

sin𝜙

cos 𝜙

17

Optimizations

𝑃𝑥
= 𝑃𝑇 × 𝑐𝑜𝑠𝜙
𝑃𝑦
= 𝑃𝑇 × 𝑠𝑖𝑛𝜙

𝑃𝑥
= 𝑃𝑇 × 𝑐𝑜𝑠𝜙
𝑃𝑦
= 𝑃𝑇 × 𝑠𝑖𝑛𝜙

𝑃𝑥
= 𝑃𝑇 × 𝑐𝑜𝑠𝜙
𝑃𝑦
= 𝑃𝑇 × 𝑠𝑖𝑛𝜙

𝑃𝑥
= 𝑃𝑇 × 𝑐𝑜𝑠𝜙
𝑃𝑦
= 𝑃𝑇 × 𝑠𝑖𝑛𝜙

𝑃𝑥
= 𝑃𝑇 × 𝑐𝑜𝑠𝜙
𝑃𝑦
= 𝑃𝑇 × 𝑠𝑖𝑛𝜙

𝑃𝑥
= 𝑃𝑇 × 𝑐𝑜𝑠𝜙
𝑃𝑦
= 𝑃𝑇 × 𝑠𝑖𝑛𝜙

𝑃𝑥
= 𝑃𝑇 × 𝑐𝑜𝑠𝜙
𝑃𝑦
= 𝑃𝑇 × 𝑠𝑖𝑛𝜙

𝑃𝑥
= 𝑃𝑇 × 𝑐𝑜𝑠𝜙
𝑃𝑦
= 𝑃𝑇 × 𝑠𝑖𝑛𝜙

𝑝𝑥
= 𝑝𝑇 × 𝑐𝑜𝑠𝜙
𝑝𝑦
= 𝑝𝑇 × 𝑠𝑖𝑛𝜙

Projection

𝜙

11 bits

sin table

cos table

sin𝜙

cos 𝜙

X 128 particles

18

Optimizations

𝑃𝑥
= 𝑃𝑇 × 𝑐𝑜𝑠𝜙
𝑃𝑦
= 𝑃𝑇 × 𝑠𝑖𝑛𝜙

𝑃𝑥
= 𝑃𝑇 × 𝑐𝑜𝑠𝜙
𝑃𝑦
= 𝑃𝑇 × 𝑠𝑖𝑛𝜙

𝑃𝑥
= 𝑃𝑇 × 𝑐𝑜𝑠𝜙
𝑃𝑦
= 𝑃𝑇 × 𝑠𝑖𝑛𝜙

𝑃𝑥
= 𝑃𝑇 × 𝑐𝑜𝑠𝜙
𝑃𝑦
= 𝑃𝑇 × 𝑠𝑖𝑛𝜙

𝑃𝑥
= 𝑃𝑇 × 𝑐𝑜𝑠𝜙
𝑃𝑦
= 𝑃𝑇 × 𝑠𝑖𝑛𝜙

𝑃𝑥
= 𝑃𝑇 × 𝑐𝑜𝑠𝜙
𝑃𝑦
= 𝑃𝑇 × 𝑠𝑖𝑛𝜙

𝑃𝑥
= 𝑃𝑇 × 𝑐𝑜𝑠𝜙
𝑃𝑦
= 𝑃𝑇 × 𝑠𝑖𝑛𝜙

𝑃𝑥
= 𝑃𝑇 × 𝑐𝑜𝑠𝜙
𝑃𝑦
= 𝑃𝑇 × 𝑠𝑖𝑛𝜙

𝑝𝑥
= 𝑝𝑇 × 𝑐𝑜𝑠𝜙
𝑝𝑦
= 𝑝𝑇 × 𝑠𝑖𝑛𝜙

Projection

𝜙

𝑎𝑠𝑖𝑛𝜙
2 + 𝑏𝑠𝑖𝑛𝜙 + 𝑐𝑠𝑖𝑛 sin𝜙

cos𝜙𝑎𝑐𝑜𝑠𝜙
2 + 𝑏𝑐𝑜𝑠𝜙 + 𝑐𝑐𝑜𝑠

Locate the
bin index

19

Optimizations

20

Implementation

Deregionizer

pT, eta, phi, pID, charge, puppi weight……

MET

pT, phi

How can we connect them?

21

Implementation

Deregionizer

pT, eta, phi, pID, charge, puppi weight……

MET

pT, phiWrapper

pT, phi vector

22

Implementation

Deregionizer

pT, eta, phi, pID, charge, puppi weight……

MET

pT, phiWrapper

pT, phi vector

What if we want to put other algorithms together?

Seeded Cone Jet

MHT

23

Implementation

Deregionizer

pT, eta, phi, pID, charge, puppi weight……

MET

pT, phiWrapper

pT, phi vector

What if we want to put other algorithms together?

Seeded Cone Jet

MHT

Need to wait for synchronize

24

Implementation

Deregionizer

pT, eta, phi, pID, charge, puppi weight……

MET

pT, phiWrapper

pT, phi vector

What if we want to put other algorithms together?

Every 1 cycle
Seeded Cone Jet

MHT

25

Implementation CTL 2

……

64 bits for every link to GT,
sent for 54 cycles

26

Implementation CTL 2

CL to GT Link: 54 words
6 TMX×360 MHz / 40 MHz=54

Data Sending Sequence
12 Jets * 2 words(24 words),
HTMHT * 2 words,
12 Jets with Large radius * 2 words(24 words),
HTMHT with Large radius * 2 words,
MET * 2 words

27

Implementation CTL 2

CL to GT Link: 54 words
6 TMX×360 MHz / 40 MHz=54

Data Sending Sequence
12 Jets * 2 words(24 words),
HTMHT * 2 words,
12 Jets with Large radius * 2 words(24 words),
HTMHT with Large radius * 2 words,
MET * 2 words

28

Implementation

29

Implementation

30

Thank You!

Useful Links
- https://khu.dcollection.net/srch/srchDetail/200000847818
- https://cds.cern.ch/record/2932976?ln=en
- https://indico.cern.ch/event/1498722/

https://khu.dcollection.net/srch/srchDetail/200000847818
https://cds.cern.ch/record/2932976?ln=en
https://indico.cern.ch/event/1498722/
https://indico.cern.ch/event/1498722/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

