Deep Learning for the Level-1 ME0 Trigger in the CMS Experiment

HEO WooHyeon

1st Korea HEP-FPGA Firmware Developers' Forum 2025 25th August 2025

ME0

- In phase-2 upgrade of CMS, ME0 will be installed at the endcap as a part of the Muon system
- Feature^[1]:
 - 6-layers of triple Gas Electron Multiplier (GEM) Chamber
 - \rightarrow Stack
 - 18 Stacks will be installed for each disk
 - Inner radius ≈ 0.6 m / Outer radius ≈ 1.5 m
 - Covers **2.0 < |\eta| < 2.8**, $\Delta \phi$ = 20°
 - \rightarrow The only muon detector above $|\eta| = 2.4$
 - Consists of 8 partitions along the η direction (iη) and 384 strips (374 for iη = 1) along the φ direction
- Due to the high background environment of ME0, it is important to trigger on proper targets

[1] "The Phase-2 Upgrade of the CMS Muon Detectors", CMS Report (2017)

ME0 Stub Finder

- 1. Pre-Processing Data
 - 1) Pad Strip : PadStrip(N) <= Strip(2N) Or Strip(2N+1)
 - → Reducing the processing time

2) Combined eta Partition:

Original 8 eta Partitions + 7 virtual Partitions (combined data of two adjacent eta partition)

→ Able to detect a track crossing two eta partition

ME0 Stub Finder

Scanning Pad Data with pattern masks

Pattern 1, 3, 5, ..., 15 are mirrored patterns of Pattern 2, 4, 6, ..., 16

- Segments that satisfy certain conditions are sent to the Endcap Muon Track Finder (EMTF)
 - A segment must have hits in at least 4 layers (Minimal requirement)
 - 27 Bits per segment (4 : Eta / 10 : Phi / 9: Bending Angle / 4 : Quality)
 - Position and Bending Angle are obtained by linear regression
- Simulation result with minimal requirement:

Minbias rate per chamber = 179.7 MHz

Muon Efficiency =
$$\frac{\text{(# of matched muon track)}}{\text{(# of total muon track)}}$$

Minbias rate per chamber = $\frac{\text{(# of unmatched segment)}}{\text{(36 chambers)} \times \text{(25 ns)}} \times \text{(Fill Factor)}$

Concerning number of segments to send EMTF / most of them are effect of Pile-up → need to filter the segments from Pile-Ups

ME0 Stub Finder with ML

- Study for ME0 Stub Finder (ME0SF) using CNN
 - CNN show great performance in pattern finding problem.
- Model :
 - 1-3 layers of 2D Convolution filter + ReLU between CNNs
 - Set to be light to meet the maximum processing time of ME0 Trigger system
- Input Data : (15, 6, 192)
 - Pad Strip data for 15 η partitions (8 original η partitions + 7 virtual partitions)
 - Training data : muons with $p_T = 1-10 \text{ GeV}$ and average 200 Pile-Up (~100,000 events)

ME0 Stub Finder with ML

- Output Data : (15, 192)
 - Segment strip position
 - 15 vectors corresponding to strip-wise segment position for 15 partition
 - Each vector has 192 dimensions and nth dimension correspond to nth pad strip
 - The score of 0 to 1 will be given representing how a segment is likely be at that pad strip
 - ME0SF will only run on the strips specified by the model, while the standard algorithm scans all strips

Performance

- Performance of ME0SF with 1-, 2-, and 3-layer Models
- Sample
 - For efficiency: 50,000 events, each containing 8 randomly generated muons with uniform p_T=1–200 GeV and |η|=2.0–2.8,
 along with an average of 200 additional pile-up collisions per bunch crossing (BX)
 - For Minbias rate: 50,000 events, only pile-up collisions, with an average of 200 per BX
- Matching rule :
 - A segment is considered matched with a muon track if

Eta position match : $|(\eta Partition)_{MuonTrack} - (\eta Partition)_{segment}| \le 1$

Strip position match : $|(PadStrip)_{MuonTrack} - (PadStrip)_{segment}| \le 5$

Bending angle match : $|(Bending Angle)_{MuonTrack} - (Bending Angle)_{segment}| \le 0.4$

Minbias rate per chamber = (# of unmatched segment) / (36 chambers) × (25 ns) × (Fill Factor)
 Fill Factor ≈ 0.7710

Overall performance

	Loose cut*	1 layer CNN	2 layers CNN	3 layers CNN
Efficiency	99.19 %	98.70 %	99.04 %	99.21 %
Minbias rate per chamber	179.7 MHz	114.3 MHz	90.10 MHz	80.32 MHz

For every case of CNN, Minbias rate is reduced by 1/3 to 1/2 of the one from the standard ME0SF while preserving ~99% of Efficiency, even for the 1-layer CNN

^{* &}quot;Loose cut" indicate the standard ME0SF implementation with a minimal segment requirement, defined as having hits in at least 4 layers. The "loose cut" is also applied to CNN assisted ME0SF

Performance vs η partition & p_T

- Significant reduction in the Minbias rate when using CNN especially in high η
- Maintained >95% efficiency after applying CNN to ME0SF even for the low p_{T} of <5 GeV or high η of 2.8

Muon Efficiency =
$$\frac{\text{(\# of matched muon track)}}{\text{(\# of total muon track)}}$$

Minbias rate per chamber = $\frac{\text{(\# of unmatched segment)}}{\text{(36 chambers)} \times \text{(25 ns)}} \times \text{(Fill Factor)}$

Quantization

- Technique to simplifies the computation of deep learning model reducing memory usage and increasing processing speed
 - Reducing the number of bits in weight
 - Pruning multiple layer of network
- To fit in the required processing time, quantizing the model is essential

Quantization-aware Training

- Quantization-aware training for 2 and 3 layers CNN model with 4 and 8bits quantization
- Kernel size = (3,3) for intermediate layer and (6,3) for final layer, $N_{kernel} = 5$

Quantization-aware Training

Using 95% efficiency point

	2 layer, 4bits	3 layer, 4bits	2 layer, 8bits	3 layer, 8bits	2 layer (no quantization)	3 layer (no quantization)
Efficiency	0.9632	0.9682	0.9515	0.9522	0.9504	0.9506
Purity	<u>0.1385</u>	<u>0.1346</u>	<u>0.1965</u>	<u>0.2508</u>	<u>0.2323</u>	0.2777

hls4ml

- "hls4ml" is a python package for implementation of ML model to FPGAs
- Supports ML frameworks of Keras,
 Pytorch and ONNX
- Supports Vivado HLS and Vitis HLS
- hls4ml translate the pre-trained model to c++ that is convertible to the hardware language like Verilog or VHDL

hls4ml


```
+ Timing:
   * Summary:
      Clock | Target | Estimated | Uncertainty |
    |ap clk | 3.33 ns| 2.388 ns| 0.90 ns|
+ Latency:
   * Summary:
      Latency (cycles) | Latency (absolute) |
                                               Interval
                                                          Pipeline
       min
                           min
                                      max
                                              min | max
                  1363 | 4.536 us | 4.543 us | 1159 | 1160 | dataflow
         1361
```

Performance report of the model

Conclusion

- CNN Models with different depth of 1, 2 and 3 are trained to filter the pile-up induced segments in ME0SF
 - The models allow ME0SF to run only on strips specified by the model
 - → Potential to decrease the processing time for ME0SF
- CNN Models effectively reduced the Minbias rate while preserving efficiency even for high η or low p_T
- Quantize the model to reach much accessible processing time and resource

Next Plan

Find optimal number of kernel or kernel size or stride comparing with performance and processing time

Back Up

Processing Latency

- Processing Latency result from Vitis-hls synthesis
 - Target Device = xcu250-figd2104-2L-e (Alveo250)
 - Target Clock Period = 3.333 ns
 - Minimum Requirement : Max Latency < 4 μs

Model	Estimated Clock	Max Latency (cycle)	Max Latency (absolute)	
1 layer CNN	2.514 ns	34	0.113 μs	
2 layer CNN (3 kernel)	2.411 ns	1357	4.523 μs	
2 layer CNN (7 kernel)				

Seg Position from ML: 64, 65, 63

Real Track Position: 64

Seg Position from ML: 178, 177, 168

Real Track Position: 178

Seg Position from ML:

Real Track Position:

Seg Position from ML: 88, 87

Real Track Position:

Further Plan

- Full ML Algorithm for ME0 Stub Finder
- Model that produce "sub-strip", "bending angle" and "ML score" at given position from "Position Finder"
 - ML score (= model loss) is used for the ghost cancelation or cross partition cancelation

"Position Finder"

Process Latency

Process Latency from hls4ml report

- Target device:
 xcu250-figd2104-2L-e (Alveo250)
- Total Latency: 8341 clock cycles
 - <u>27.801 μs</u> for 3.33 ns clock
 - Mostly caused by Interval (the time to get next data)

What to do

- Change Configuration
 - PipelineStyle
 DataFlow → Pipeline (Failed)
 - Strategy
 Latency → Unrolled
 - Precision
 fixed<16,6> → lower the bits

```
== Performance Estimates
+ Timing:
  * Summary:
      ----+------
    Clock | Target | Estimated | Uncertainty |
   |ap clk | 3.33 ns| 2.433 ns| 0.90 ns|
      ----+-----+
+ Latency:
    Summary:
          -+-----+---+----+
     Latency (cycles) | Latency (absolute) |
                                      Interval
                                               Pipeline
                     min
     min
             max
                                     min |
                              max
                   27.801 us 27.801 us 8322 8322
       8341
```