
Introduction to Hardware
Description Language (HDL)

Jaebak Kim (Korea University) 1August 26, 2025 (1st Korea HEP FPGA Forum)

What is Hardware description language (HDL)?

•Computer language that

describes digital circuits.

•Used to simulate digital circuits.

•Used to make FPGA firmware.

Ø= Synthesizing firmware

Ø= Create digital circuits in FPGAs
Jaebak Kim (Korea University) 2August 26, 2025 (1st Korea HEP FPGA Forum)

Simulation HDL vs Synthesis HDL
•Synthesis: Converts HDL to FPGA

components and connections.

ØHDL must be physically realizable.

•Simulation: Additional syntax to do

simulation easily on computer.

ØExample: Read txt file.

Jaebak Kim (Korea University) 3

Simulate-able HDL

Synthesizable HDL

August 26, 2025 (1st Korea HEP FPGA Forum)

Verilog vs VHDL
•There are two major HDL languages

(Like C++ and Java)

ØVHDL: From U.S. Department of defense.

ØVerilog: From compony acquired by

Cadence

•VHDL and Verilog have versions, like

C++11.
Jaebak Kim (Korea University) 4

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity half_adder is
 Port (
 A : in STD_LOGIC; -- First input bit
 B : in STD_LOGIC; -- Second input bit
 SUM : out STD_LOGIC; -- Sum output
 COUT : out STD_LOGIC -- Carry output
);
end half_adder;

architecture Behavioral of half_adder is
begin
 SUM <= A xor B; -- Sum is XOR of inputs
 COUT <= A and B; -- Carry is AND of inputs
end Behavioral;

module half_adder (
 input wire A, // First input bit
 input wire B, // Second input bit
 output wire SUM, // Sum output
 output wire COUT // Carry output
);

 assign SUM = A ^ B; // XOR for sum
 assign COUT = A & B; // AND for carry

endmoduleAugust 26, 2025 (1st Korea HEP FPGA Forum)

Verilog vs VHDL

•VHDL is case insensitive. Verilog is case sensitive.

•VHDL is strongly typed. Verilog is weakly typed.

ØStrongly typed: Everything must be specifically defined.

• It is possible to use a Verilog “module” inside VHDL.

• It is possible to use a VHDL “module” inside Verilog.

Jaebak Kim (Korea University) 5August 26, 2025 (1st Korea HEP FPGA Forum)

Synthesizing and simulating HDL
•Programs are used to synthesize

and simulate HDL.

•We will be using a program from
AMD (company that acquired
Xilinx) called Vivado.

•Vivado support Verilog-2001 and
VHDL-2008.

Jaebak Kim (Korea University) 6August 26, 2025 (1st Korea HEP FPGA Forum)

HDL libraries

•Because we will be using AMD (Xilinx) FPGAs, we will

need AMD HDL libraries.

ØUNISIM, XPM: Simulation library for AMD components

“primitives”.

ØUNIMACRO: Simulation library for AMD macros.

• In Vivado, AMD libraries are automatically included.
Jaebak Kim (Korea University) 7August 26, 2025 (1st Korea HEP FPGA Forum)

Verilog and VHDL

•Will first be explaining about Verilog coding.

•VHDL also has similar/same concepts.

•Will also explain about VHDL coding.

Jaebak Kim (Korea University) 8August 26, 2025 (1st Korea HEP FPGA Forum)

Module

•HDL is written by creating a “module”

(a function)

ØHas inputs and outputs.

•There is a “top” module that

corresponds to main() in C++

ØThe top module input / output should

correspond to FPGA pins.
Jaebak Kim (Korea University) 9

FPGA pin

August 26, 2025 (1st Korea HEP FPGA Forum)

Structure of Verilog module
•Add library

•Module interface

•Body

ØVariable definition

ØBody logic

Ø Procedural block
Jaebak Kim (Korea University) 10

`include “folder/sub.v”

module example #(
 parameter nbit = 8
)
 (
 input wire [nbit-1:0] A,
 input wire clk,
 output wire [nbit-1:0] B
);

wire [nbit-2:0] short_A;
reg [nbit-1:0] cnt;

assign short_A = A[nbit-2:0];

always @(posedge clk) begin
 cnt <= short_A + 1;
end

…

endmodule

Can be
swapped

*Body can also include
input/output definition.

August 26, 2025 (1st Korea HEP FPGA Forum)

Module syntax
•Need to define input & outputs ports

ØCan define type: wire or reg

vwire just connection. reg saves values.

Jaebak Kim (Korea University) 11

module half_adder (
 input wire A,
 input wire B,
 output wire SUM,
 output wire CARRY
);

XOR
gate

AND
gate

Sum

Carry

wire

wire

wire

wire or regwire or reg wire

OutputInput

Inout

Module

August 26, 2025 (1st Korea HEP FPGA Forum)

Module syntax
•Modules can also have

parameters.

ØParameter values are static.

ØValue cannot change for a

made firmware.

• Input, output values are

dynamic. (Values change).
Jaebak Kim (Korea University) 12

module example #(
 parameter nbit = 8
)
 (
 input wire [nbit-1:0] A,
 input wire clk,
 output wire [nbit-1:0] B
);

August 26, 2025 (1st Korea HEP FPGA Forum)

Module body
• Body statements are concurrent

ØAll statements/blocks are assessed at same time.

ØStatements/blocks are continuously assessed.

• Procedural block (block of code)

ØStatements are assessed line by line in sequence.

Ø Always block: Used for synthesis & simulation.

ØInitial block: Only used for simulation.

Jaebak Kim (Korea University) 13

wire [nbit-2:0] short_A;
reg [nbit-1:0] cnt;
reg [nbit-1:0] cnt2;
reg fake_clk;

assign short_A = A[nbit-2:0];

always @(posedge clk) begin
 cnt = short_A + 1;
 cnt2 = cnt + 1;
end

initial begin
 #10 fake_clk = 1’b1
 #20 fake_clk = 1’b0
end

After 10 time units
After 20 time units

August 26, 2025 (1st Korea HEP FPGA Forum)

Commenting

•// are comments

•/* */ are multi-line

comments

Jaebak Kim (Korea University) 14

module half_adder (
 input A, // First input bit
 input B, // Second input bit
 output SUM, // Sum output
 output CARRY // Carry output
);

/*
 This is a multi-line comment.
 The half adder produces:
 - SUM = A XOR B
 - CARRY = A AND B
 Useful for basic arithmetic operations.
*/

Note: Verilog sets undefined
input and output types to wire.

August 26, 2025 (1st Korea HEP FPGA Forum)

Keyword and identifiers

•Defining is typically done with keywords and values.

•Keywords can be types.

•Other keywords: module, output, always, if, for, …

Jaebak Kim (Korea University) 15

module add // module is keyword; add is identifier
input clk; // input is keyword; clk is identifier
reg cnt; // reg is keyword; cnt is identifier

August 26, 2025 (1st Korea HEP FPGA Forum)

Data types

•wire: Just a connection. Also known as “net”. Size 1 bit.

•reg: Stores values until overwritten. Size 1 bit. “register”

•Possible values for wire or reg.

Jaebak Kim (Korea University) 16

Value Represents
0 GND
1 High
Z Floating, High impedance
X Unknown

August 26, 2025 (1st Korea HEP FPGA Forum)

Arrays

•Typical arrays (Multiple bits)

Øwire [3:0] clk; // A four bit wire

Øreg [7:0] cnt [0:3][0:3]; // 4x4 matrix, each element 8 bit

•Accessing arrays.

Jaebak Kim (Korea University) 17

clk_0 = clk[0]; cnt[0][1] = 8’b0000_0001;
cnt[0][1][0] = 1’b1;

August 26, 2025 (1st Korea HEP FPGA Forum)

Representing numbers with bits

•Numbers are represented by bits in

computers and FPGA

Ø11 (decimal) = 1	×2! + 1	×2" + 1	×2#

= 1011 (binary)

ØBinary in Verilog: 4’b1011 (= 4 bits)

ØBinary is long to write. Write with

hexadecimal: 1’hB (= 1 hex)
Jaebak Kim (Korea University) 18August 26, 2025 (1st Korea HEP FPGA Forum)

How to represent negative values with bits?
•Negative values are represented with two's complement

ØMost significant bit (MSB) represents −2!"# (𝑛 is total bits)

ØOther bits represents positive bits.

Ø4𝑏$1011 = 1×(−2%) + 1×2# + 1×2& = −5

ØSo 4 bits can represent numbers from –8 to 7.

•Values with two’s complement are called signed values.
Jaebak Kim (Korea University) 19

4b’ 1011

MSB LSB (Least significant bit)

August 26, 2025 (1st Korea HEP FPGA Forum)

Comparison between signed and unsigned

•What number does 4’b1011 represent?

ØIs is 11? = 1	×2% + 1	×2# + 1	×2&

ØIs it -5? = 1×(−2%) + 1×2# + 1×2&

•Need to define if binary value is “unsigned” or ”signed”
Øreg signed [3:0] a; // Binary will be signed.

Øreg [3:0] b; // Binary will be unsigned.

Jaebak Kim (Korea University) 20

“unsigned”

“signed”

August 26, 2025 (1st Korea HEP FPGA Forum)

Decimal points (Two methods)
•Fixed point representation: Integer bits + Fractional bits

ØPosition of decimal point is fixed.

ØExample: (binary) 101.11 = 2' + 2& + 2"# + 2"' = 5.75

•Floating point representation:

ØDecimal point floats.

ØUsed in computers

Jaebak Kim (Korea University) 21August 26, 2025 (1st Korea HEP FPGA Forum)

Decimal points in FPGAs
•Floating point arithmetic is difficult to implement with

digital gates. Uses lots of resources. (Don’t recommend)

•However fixed point (+,−,×) calculation is easy.

•Unsigned, Signed, Fixed point (+,−,×) are identical!
Jaebak Kim (Korea University) 22

4’b0010
+ 4’b1011
= 4’b1101

2
11
13

0.5
2.75
3.25

2
-5
-3

Binary addition Unsigned Signed Fixed point (two bit fraction)

Nice reference: Link

August 26, 2025 (1st Korea HEP FPGA Forum)

https://projectf.io/posts/fixed-point-numbers-in-verilog/

Operators
•There are many operators.

ØMost can be used in synthesis.

ØDivide and modulus are difficult to

synthesize. (Don’t recommend)

vCould use look up tables instead.

Jaebak Kim (Korea University) 23August 26, 2025 (1st Korea HEP FPGA Forum)

Break time

•How much did you understand? www.kahoot.it

Jaebak Kim (Korea University) 24August 26, 2025 (1st Korea HEP FPGA Forum)

Assigning values
•For body logic

Øassign var_a = 4’b1100;

•For procedural block

ØNon-blocking assignment: var_a <= 4’b1100;
ØBlocking assignment: var_a = 4’b1100;
ØFirst understand “synchronous logic”, “always block”, and

“concurrency”
Jaebak Kim (Korea University) 25August 26, 2025 (1st Korea HEP FPGA Forum)

Assigning values
•For body logic

Øassign var_a = 4’b1100;

•For procedural block

ØNon-blocking assignment: var_a <= 4’b1100;
ØBlocking assignment: var_a = 4’b1100;
ØFirst understand “synchronous logic”, “always block”, and

“concurrency”
Jaebak Kim (Korea University) 26August 26, 2025 (1st Korea HEP FPGA Forum)

Synchronous logic (= clocked process)
•Logic that changes at intervals of time

ØExample: Logic changes at rising edge of clock.

ØLogic has synchronized timing (through flip-

flops).

•Opposite is asynchronous logic (Logic

changes as soon as possible)
Jaebak Kim (Korea University) 27August 26, 2025 (1st Korea HEP FPGA Forum)

Synchronous logic (= clocked process)

• Implemented with flip-flops

•Focus on AND2
1. A_FF, B_FF changes.

2. AND2 takes 3ns to work

3. AND2_FF changes.

•There are multiple steps.

•How can Verilog model this?
Jaebak Kim (Korea University) 28

FF is flip-flop

August 26, 2025 (1st Korea HEP FPGA Forum)

Always block
•Statements assessed line by line in sequence.

•There is sensitivity list and statements.

•Sensitivity list has two purposes.

ØUsed for simulation. Tells when to evaluate

statements. If variable changes, evaluate.

ØUsed to indicate synchronous logic for

synthesis. (posedge → positive edge)
Jaebak Kim (Korea University) 29

always @(posedge clk)
begin

if (reset) begin
 // set things
 end else begin
 // do things
end

end

August 26, 2025 (1st Korea HEP FPGA Forum)

Always block (reset)

•Reset signal could be synchronous or

asynchronous.

ØSynchronous: reset accepted only at

clock edge.

ØAsynchronous: rest always accepted

Jaebak Kim (Korea University) 30

always @(posedge clk or
posedge reset)
begin
if (reset) begin
 // set things
 end else begin
 // do things
end
end

always @(posedge clk) begin
if (reset) begin
 // set things
 end else begin
 // do things
end
end

August 26, 2025 (1st Korea HEP FPGA Forum)

Evaluation of blocks
•Evaluation is done in steps.

1. (Mainly for simulation) Event occurs to

start evaluation. Event is when variable

in sensitivity list changes.

2. Schedule to change value for statements.

vAt this step, values do not change.

3. Values are changed.
Jaebak Kim (Korea University) 31

always @(A)
begin

B <=A;
C <= B;

end

“new” B will have value of “current” A
“new” C will have value of “current” B

“new” B and “current” B
are different.

August 26, 2025 (1st Korea HEP FPGA Forum)

Synchronous logic and
block evaluation relation

•always block can create synchronous logic.
Jaebak Kim (Korea University) 32

Synchronous logic Block evaluation
Input flip-flop changes. Sensitivity list event.
Operation takes time Schedule to change value.
Output flip-flop changes. Value changes.

FF Operation FF

Clock

always @(posedge clk) begin
A <= B + B;
end

•Synchronous logic and block

evaluation are similar

August 26, 2025 (1st Korea HEP FPGA Forum)

Evaluation of statements in blocks.

•Non-blocking assignment: <=

ØAssignment is done with scheduling and

then changing value.

•Blocking assignment: =

ØValue is changed immediately.

Jaebak Kim (Korea University) 33

always @(A)
begin

B = A;
C <= B;

end

B is value of “current” A
“new” C will have value of B

August 26, 2025 (1st Korea HEP FPGA Forum)

How are non-blocking, blocking assignment used?
•Generally used in synchronous logic (Clocked process)

Jaebak Kim (Korea University) 34

always @(posedge clk)
begin

B = A[2:0];
C <= B+1;

// D <= E + F + G + H;
D_1 = E + F;
D_2 = G+H;
D <= D_1 + D_2;

end

ØGeneral logic is written with <= to model

flip-flops.

ØWhen we want to make a nickname, we

can use = (B is a nickname for A[2:0])

ØWhen we want to write a operation in

multiple lines, we can use =
August 26, 2025 (1st Korea HEP FPGA Forum)

Always block (last statement wins)

•Statements are assessed line by line in

sequence.

•Last statement will overwrite previous

statement.

Jaebak Kim (Korea University) 35

always @(posedge clk)
begin

A <= 1 + 2;
…
…
A <= 2 + 2;

end

August 26, 2025 (1st Korea HEP FPGA Forum)

In body logic, assign multiple
times causes error.
•Body logic assess statements at

same time.

•So assigning a variable multiple

time causes an error.

ØCan’t not know what variable

should be.
Jaebak Kim (Korea University) 36

`include “folder/sub.v”

module example #(
 parameter nbit = 8
)
 (
 input wire [nbit-1:0] A,
 input wire clk,
 output wire [nbit-1:0] B
);

wire short_A;
reg [nbit-1:0] cnt;

assign short_A = A[nbit-2:0];
…
…
assign short_A = A[nbit:2];

endmodule

August 26, 2025 (1st Korea HEP FPGA Forum)

Using modules inside other modules
•Verilog is structured with multiple modules.

Jaebak Kim (Korea University) 37

Top module

Module A Module B

Module C

Module D

ØInstead of writing long top module,

multiple modules are written.

•There is code to define a module.

•There is code to use(“instantiate”)

a module.
August 26, 2025 (1st Korea HEP FPGA Forum)

Using modules inside other modules

•There is code to define a module.

•There is code to use(“instantiate”)

a module.

ØCan make multiple copies of the

module with instantiation.

Jaebak Kim (Korea University) 38

module find_higgs (
 input wire mu_p,
 input wire mu_m,
 output wire higgs);

find_higgs hunter1 (
 .mu_p (first_mu),
 .mu_n (second_mu),
 .higgs (higgs1));

find_higgs hunter2 (
 .mu_p (third_mu),
 .mu_n (fourth_mu),
 .higgs (higgs2));

August 26, 2025 (1st Korea HEP FPGA Forum)

Instantiation with setting parameters

•A module can be defined to have

a static parameter. (Can’t change

for a made firmware)

•Can instantiate with certain

parameter.

Jaebak Kim (Korea University) 39

example example_inst #(
 .nbit (5))
 (
 .A (bottom),
 .clk (clk40mhz),
 .B (charm)
);

module example #(
 parameter nbit = 8)
 (
 input wire [nbit-1:0] A,
 input wire clk,
 output wire [nbit-1:0] B
);

Default is 8.

August 26, 2025 (1st Korea HEP FPGA Forum)

How to make many copies of a module/code
•Generate block: Can replicates design multiple times or

conditionally.

Jaebak Kim (Korea University) 40

genvar i; // loop index
generate
 for (i=0; i < 5; i = i + 1) begin
 find_higgs hunter(mu_p[i], mu_n[i], higg[i]);
 end
endgenerate

module #(parameter c) my_design(input a, output b);

generate
 if (c) begin
 find_higgs hunter(a, b);
 end else begin
 find_z hunter(a,b);
 end
endgenerate

ØGenerate block is static.

ØCopy and paste

multiple time. Can’t

dynamically change how

many times.
Called as unrolling a for loop.

August 26, 2025 (1st Korea HEP FPGA Forum)

For loops
•For loops can be placed in generate block and also in

always block.

Jaebak Kim (Korea University) 41

always @(posedge clk) begin

 integer i; // loop index

 for (i = 5; i > 0; i = i - 1) begin
 data_out[i] <= data_out[i-1];
 end

end

•For loops in always

block can be dynamic,

but requires lot’s of

resources. (Not

recommended) Need to create circuits for all possibilities.
August 26, 2025 (1st Korea HEP FPGA Forum)

If/else
• If/else can be placed in generate blocks and always

blocks.

Jaebak Kim (Korea University) 42

always @(posedge clk) begin

 if (a == 1) begin
 \\ statements
 end else if (a < 5) begin
 \\ statements
 end else begin
 \\ statements
 end
end

•Recommended to consider all

possibilities.

ØRecommended to write “else”.

August 26, 2025 (1st Korea HEP FPGA Forum)

case
•Case can be placed in generate block and always block.

Jaebak Kim (Korea University) 43

case (COUNTER)
 2’b00 : begin
 // statements
 end
 2’b01 : begin
 // statements
 end
 default: begin
 // statements
 end
endcase;

•Commonly used in “Finite State

Machines” (FSM) to consider cases

of different states.

August 26, 2025 (1st Korea HEP FPGA Forum)

case vs if/else

Jaebak Kim (Korea University) 44

always @(posedge clk) begin

 if (a == 1) begin
 \\ statements
 end else if (a < 5) begin
 \\ statements
 end else begin
 \\ statements
 end
end

•“if/else” conditions can have

priority, while case conditions

do not.

Øa == 1 has high priority.

•Priority conditions require

more resources.
•Case can use less

resources.
August 26, 2025 (1st Korea HEP FPGA Forum)

Break time

•How much did you understand? www.kahoot.it

Jaebak Kim (Korea University) 45August 26, 2025 (1st Korea HEP FPGA Forum)

Libraries in VHDL

•VHDL tries to be explicit.

•Need to explicitly write what libraries will be used.

ØVerilog has a default library built in.

•General libraries for VHDL:

Jaebak Kim (Korea University) 46

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.NUMERIC_STD.ALL;

August 26, 2025 (1st Korea HEP FPGA Forum)

Verilog vs VHDL

Jaebak Kim (Korea University) 47

module example #(
 parameter nbit = 8
)
 (
 input wire [nbit-1:0] A,
 input wire clk,
 output wire [nbit-1:0] B
);

wire [nbit-2:0] short_A;
reg [nbit-1:0] cnt;

assign short_A = A[nbit-2:0];

always @(posedge clk) begin
 cnt <= short_A + 1;
end

endmodule

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.NUMERIC_STD.ALL;

entity example is
generic (nbit : integer := 8);
port (A : in std_logic_vector (nbit-1 downto 0);
 clk : in std_logic;
 B : out std_logic_vector(nbit-1 downto 0));
end example;

architecture behavior of example is
 signal short_A : std_logic_vector(nbit-2 downto 0);
 signal cnt : unsigned(nbit-1 downto 0);
begin
 short_A <= A(nbit-2 downto 0);
 process (clk) begin
 if rising_edge(clk) then
 cnt <= unsigned(short_A) + 1;
 end if;
 end process;

end behavior;
August 26, 2025 (1st Korea HEP FPGA Forum)

VHDL signal

•VHDL “signal” is same as Verilog wire and Verilog reg.

ØEverything is just a signal.

Jaebak Kim (Korea University) 48

wire

wire

wire

wire or regwire or reg wire

OutputInput

Inout

Module

August 26, 2025 (1st Korea HEP FPGA Forum)

Defining a signal

•Keyword is signal.

•Define name.

•Define type.

•Possible to define initial value.
Jaebak Kim (Korea University) 49

signal A : std_logic := ’0’;
signal cnt : std_logic_vector(nbit-1 downto 0) := (others=> ‘0’);

August 26, 2025 (1st Korea HEP FPGA Forum)

VHDL doesn’t have initial block

•VHDL doesn’t need initial block. It is just a process.

Jaebak Kim (Korea University) 50

always @(posedge clk) begin
 cnt = short_A + 1;
 cnt2 = cnt + 1;
end

initial begin
 #10 fake_clk = 1’b1
 #20 fake_clk = 1’b0
end

process (clk) begin
 if rising_edge(clk) then
 cnt <= unsigned(short_A) + 1;
 cnt2 <= unsigned(cnt) + 1;
 end if;
end process;

process begin
 wait for 10 ns;
 fake_clk <= '1’;
 wait for 20 ns;
 fake_clk <= '0';
end process;

Similar to always block

August 26, 2025 (1st Korea HEP FPGA Forum)

VHDL commenting

• -- indicates comment

•/* */ is multi line comment. (Available since VHDL-2008)

Jaebak Kim (Korea University) 51

cnt <= unsigned(short_A) + 1; -- increment by 1

/* this is
a multi-line
comment */

August 26, 2025 (1st Korea HEP FPGA Forum)

VHDL data types

•std_logic: 1 bit being either 0, 1, Z, X

•std_logic_vector: multi-bit std_logic

ØTop module port must be std_logic or std_logic_vector

ØInner modules can have any type for port

ØCan not do math.

Jaebak Kim (Korea University) 52August 26, 2025 (1st Korea HEP FPGA Forum)

VHDL data types
•unsigned: Indicates bits are unsigned. Can do math.

•signed: Indicates bits are signed. Can do math.

•Type casting: VHDL uses casting a lot.

ØVHDL is strongly typed.

ØChanging from one type to another.

Jaebak Kim (Korea University) 53August 26, 2025 (1st Korea HEP FPGA Forum)

Type casting

•VHDL is a strong typed language.

ØNeed to convert types.

ØThere are functions that convert type.

Jaebak Kim (Korea University) 54

my_u_val <= unsigned(my_slv_val)

my_slv_val <= std_logic_vector(my_u_val)
my_s_val <= signed(my_slv_val)

my_slv_val <= std_logic_vector(my_s_val)

August 26, 2025 (1st Korea HEP FPGA Forum)

Arrays: Need to define type for array

Jaebak Kim (Korea University) 55

reg [7:0] cnt [0:3][0:3]; // 4x4 matrix, each element 8 bit

cnt[0][1] = 8’b0000_0001;
cnt[0][1][0] = 1’b1;

Verilog

type byte_t is std_logic_vector(7 downto 0);
type matrix_t is array (0 to 3, 0 to 3) of byte_t;
signal cnt : matrix_t := (others => (others => (others => '0')));

cnt(0, 1) <= b"0000_0001"; -- Multi bit uses “”
cnt(0, 1)(0) <= '1’; -- Single bit uses ‘’

VHDL

August 26, 2025 (1st Korea HEP FPGA Forum)

Assigning values

•Non-blocking assignment: var_a <= b”1100”;

•Blocking assignment:

ØNeed to define “variable”. Can only be used in “process"

Jaebak Kim (Korea University) 56

process(clk)
 variable temp : unsigned(7 downto 0); -- variable declaration
begin
 if rising_edge(clk) then
 temp := unsigned(din) + 1; -- immediate update
 end if;
end process;

Similar to always block

August 26, 2025 (1st Korea HEP FPGA Forum)

Process is equivalent to always block

•Sensitivity list concept is

the same as Verilog.

•For synchronous logic,

which evaluates

statements at clock edge,

write ”if rising_edge(clk)”

Jaebak Kim (Korea University) 57

always @(posedge clk) begin
 cnt <= short_A + 1;
end

process (clk) begin
 if rising_edge(clk) then
 cnt <= unsigned(short_A) + 1;
 end if;
 end process;

Verilog

VHDL

Sensitivity list

August 26, 2025 (1st Korea HEP FPGA Forum)

Instantiation of modules

•Generally need to

define module

(= Component)

•Then can instantiate

component.

Jaebak Kim (Korea University) 58

architecture behavior of top is
 -- Component(Module) declaration
 component find_higgs
 port (mu_p : in std_logic;
 mu_m : in std_logic;
 higgs: out std_logic);
 end component;

begin
 -- Component instantiation
 hunter1 : find_higgs
 port map (mu_p => first_mu,
 mu_n => second_mu,
 higgs => higgs1);
end architecture;

August 26, 2025 (1st Korea HEP FPGA Forum)

Instantiation of modules

•Also possible to just

instantiate component.

Jaebak Kim (Korea University) 59

architecture behavior of top is
 -- No component declaration
begin
 -- Component instantiation
 hunter1 : work.find_higgs
 port map (mu_p => first_mu,
 mu_n => second_mu,
 higgs => higgs1);
end architecture;

August 26, 2025 (1st Korea HEP FPGA Forum)

Instantiation with setting parameters
•Verilog parameter

= VHDL generic

• In declaration

“generic”

• In instantiation

“generic map”
Jaebak Kim (Korea University) 60

architecture rtl of top is
 component example
 generic (nbit : integer := 8);
 port (A : in std_logic_vector(nbit-1:0);
 clk : in std_logic;
 B : out std_logic_vector(nbit-1 downto 0));
 end component;

begin
 example_inst : example
 generic map (nbit => 5)
 port map (
 A => bottom,
 rst => clk40mhz,
 count => charm);
end architecture;August 26, 2025 (1st Korea HEP FPGA Forum)

Making copies of components/code

•Can also use

for generate

and if generate

to replicate

design.

Jaebak Kim (Korea University) 61

architecture behavior of top is
begin
 for i in 0 to 5 generate
 hunter : entity find_higgs
 port map (mu_p(i), mu_n(i), higg(i));
 end generate;
end architecture;

entity my_design is
 generic (C : boolean := true);
end entity;
architecture behavior of my_design is
begin
 if (C) generate
 work.find_higgs(a,b)
 else generate
 work.find_z(a,b)
 end generate;
end architecture;

August 26, 2025 (1st Korea HEP FPGA Forum)

”For” and “if” in
process
•For and if can also be

used in process.

•Syntax is slightly

different with generate

case.

Jaebak Kim (Korea University) 62

process(clk) begin
 if rising_edge(clk) then
 for i in 0 to 5 loop
 data_out(i) <= data_out(i-1);
 end loop;
 end if;
end process;

process(clk) begin
 if rising_edge(clk) then
 if a = 1 then
 -- statements
 elsif a < 5 then
 -- statements
 else
 -- statements
 end if;
 end if;
end process;August 26, 2025 (1st Korea HEP FPGA Forum)

case

•There is also

case for both

process and

generate.

Jaebak Kim (Korea University) 63

case counter is
 when “00” =>
 -- statements
 when “01” =>
 -- statements
 when others =>
 -- statements
end case;

case c generate
 when ‘0’ =>
 -- statements
 when others =>
 -- statements
end generate;

August 26, 2025 (1st Korea HEP FPGA Forum)

•How much did you understand? www.kahoot.it

Jaebak Kim (Korea University) 64August 26, 2025 (1st Korea HEP FPGA Forum)

