Introduction to Hardware
Description Language (HDL)

What is Hardware description language (HDL)?

X C
e Computer language that ° LD—
describes digital circuits. e p—D

* Used to simulate digital circuits. =

File Edit View Search Tools Options

 Used to make FPGA firmware.

»= Synthesizing firmware

» = Create digital circuits in FPGAs

Simulation HDL vs Synthesis HDL
*Synthesis: Converts HDL to FPGA

components and connections.

»HDL must be physically realizable.

*Simulation: Additional syntax to do
simulation easily on computer.

»Example: Read txt file.

Simulate-able HDL

Synthesizable HDL

Verilog vs VHDL
*There are two major HDL languages

(Like C++ and Java)

~

»VHDL: From U.S. Department of defense.

»Verilog: From compony acquired by

Cadence

*VVHDL and Verilog have versions, like

C++11.

N

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity half _adder is
Port (
A :in STD_LOGIC; -- First input bit
B :in STD_LOGIC; -- Second input bit
SUM : out STD_LOGIC; -- Sum output
COUT : out STD_LOGIC -- Carry output
);
end half_adder;

architecture Behavioral of half_adder is
begin
SUM <= A xor B; -- Sum is XOR of inputs
COUT <= A and B; -- Carry is AND of inputs
end Behavioral;

module half_adder (
input wire A, // Firstinput bit
input wire B, //Second input bit
output wire SUM, // Sum output
output wire COUT // Carry output

);

assigh SUM = A A B; // XOR for sum
assign COUT = A & B; // AND for carry

endmodule

Verilog vs VHDL

*VHDL is case insensitive. Verilog is case sensitive.

*VHDL is strongly typed. Verilog is weakly typed.

» Strongly typed: Everything must be specifically defined.

*|t is possible to use a Verilog “module” inside VHDL.

*|t is possible to use a VHDL “module” inside Verilog.

Synthesizing and simulating HDL

* Programs are used to synthesize

[]
HalfAdder - [/home/hepdream/Work/vivado/HalfAdder/HalfAdder.xpr] Aug 11 19:36 a0 O
HalfAdder - k/vivado/HalfAdd alfAdder.xpr] - Vivado 2024.1 x
[]

Flle Edit Flow Tools Reports Window Layout View Help

] X > ¥ & X »

write_bitstream Complete +/

Default Layout v
Flow Navigator s 2 PROJECT MANAGER - HalfAdder
> PROJECT MANAGER N
Sources Project Summary half_ad! d
> 1P INTEGRATOR o T 2 + -3 Overview | Dashboard
> = Pesign Sources (1) @
[] [] > SIMULATION > = Constraints Settings Edit
. > Simulation Sources (1 Project name: Halfadder
¥ RILANALYSIS > @ Utility Sources Project location: home/hepdreamorkivivado/Halfadder
> Run Linter Product family: 2Zynq-7000
v Open Elaborated Design Project part: €72020clg400-1
Top module name: d
Report Methodology
Hierarchy | Lbrarie & Target language: Verilog
Report DRC simulator language: Mixed

*d Schematic Source File Properties

C m In ° ® half_adder.vhd p ™ Synthesis Implementation
SYNTHESIS
~ Status: C lets Status: v C
O p a y a a q I e > fun s ¥ Enavled =0 ° e een]
(| I I Messages: 2 warnings

<

Messages: 6
> Open Synthesized Design Location: IfAdd. IfAdder.sres/so . +c72020clg400-1 . ol
Type: wor | [+] Strategy: Vivado Synthesis Defaults Strategy: v
v IMPLEMENTATION == Report Strategy: vivado Synthesis Default Reports Report Strategy: i
» Run Implementation (“b’a’y: ideraditiiol |- K- Incremental synthesis: Automat elected checkpoint Incremental implementation: Nc
> Open Implemented Design General Propertie: < 3
e [] [] .
v PROGRAM AND DEBUG UEEITED |G) EabCall Design Runs
¥t Generate Bitstream Q|l=|$ + %
° v Open Hardware Manager Name Constraints Status WNS TNS WHS THS WBSS TPWS TotalPower Failed Routes Methodology RQAScore QoR Suggestions LU
Vi '
D syithl constrs1 synth_design Complete!
impll constrs_1 write_bitstream Complete! NA NA NA NA NA 2152 0

*Vivado support Verilog-2001 and
VHDL-2008.

HDL libraries

* Because we will be using AMD (Xilinx) FPGAs, we will

need AMD HDL libraries.

» UNISIM, XPM: Simulation library for AMD components
“primitives”.
»UNIMACRO: Simulation library for AMD macros.

*In Vivado, AMD libraries are automatically included.

Verilog and VHDL

* Will first be explaining about Verilog coding.
*\VHDL also has similar/same concepts.

* Will also explain about VHDL coding.

Module
FPGA pin

* HDL is written by creating a “module”

(a function)

»Has inputs and outputs.

*There is a “top” module that
corresponds to main() in C++

»The top module input / output should

D €

correspond to FPGA pins.

Jaebak Kim (Korea University) August 26, 2025 (1st Korea HEP FPGA Forum)

Structure of Verilog module/v

Can be
swapped

*Body can also include
input/output definition. ¥

M d Procedural block

‘include “folder/sub.v”

module example #(
parameter nbit = 8

)

(
input wire [nbit-1:0] A,
input wire clk,

output wire [nbit-1:0] B
);

wire [nbit-2:0] short_A;
reg [nbit-1:0] cnt;

assign short_A = A[nbit-2:0];

always @(posedge clk) begin
cnt <=short_ A+ 1;

end

endmodule

Module syntax

*Need to define input & outputs ports

» Can define type: wire or reg

“*wire just connection. reg saves values.

Module Wire I

—p
wire or reg

wire I Inout

Input Output

— —
wire wire or reg

wire

A A\ Sum
)) XOR) :
gate
B 7
Carry
AND)
gate

module half_adder (
iInput wire A,
Input wire B,
output wire SUM,
output wire CARRY

);

Module syntax
* Modules can also have

parameters.

> Parameter values are static.

»Value cannot change for a

made firmware.

*|nput, output values are

dynamic. (Values change).

module example #(
parameter nbit = 8

)
(

input wire [nbit-1:0]
input wire clk

output wire [nbit-1:0]
),

Module body

are concurrent wire [nbit-2:0] short_A;
reg [nbit-1:0] cnt;

» All statements/blocks are assessed at same time. 2 [notedo) ent2;

»Statements/blocks are continuously assessed. assign short_A = Alnbit-2:0];

always @(posedge clk) begin
(block of code) cnt = short_A+1;

cnt2 =cnt + 1;
end

» Statements are assessed line by line in sequence.

initial begin

> PXWENRRSLI® Used for synthesis & simulation. o re o - 1o

#20 fake_clk =1'b0

end
: Only used for simulation. \

After 10 time units
After 20 time units

Commenting

e // are comments

o /* *[are multi-line

comments

Note: Verilog sets undefined

input and output types to wire.

module half_adder (
input A, //Firstinput bit
input B, //Second input bit
output SUM, //Sum output
output CARRY // Carry output

);
/*

This is a multi-line comment.
The half adder produces:
-SUM =AXORB
- CARRY =A ANDB
Useful for basic arithmetic operations.

*/

Keyword and identifiers

* Defining is typically done with keywords and values.

module add // module 1s keyword; add 1s identifier
input clk; // input is keyword; clk 1s identifier
reg cnt; // reg 1s keyword; cnt 1s identifier

* Keywords can be types.

* Other keywords: module, output, always, if, for, ...

Data types

ewire: Just a connection. Also known as “net”. Size 1 bit.

*reg: Stores values until overwritten. Size 1 bit.

* Possible values for wire or reg.

“register”

Value |Represents

0 GND

1 High

Z Floating, High impedance
X Unknown

GND

/ 1

GND

T
E

Arrays
* Typical arrays (Multiple bits)

»>wire [3:0] clk; // A four bit wire
»reg [7:0] cnt [0:3][0:3]; // 4x4 matrix, each element 8 bit

* Accessing arrays.

|clk_0 = clk[0];] cnt[0][1] = 8’b0000_0001;
cnt[0][1][0] = 1'b1;

Representing numbers with bits

Denary/Decimal Binary Hexadecimal

° Numbe rs are represe nted by b|ts in Base 10 Number System | Base 2 Number System | Base 16 Number System
0 0000 0
1 0001 1
computers and FPGA ; oot ;
4 0100 4
»11 (decimal) = 1 x2% + 1 x2* +1x2°] :
. 7 0111 7
= 1011 (blnary) 8 1000 8
9 1001 9
»Binary in Verilog: 4'b1011 (= 4 bits) " 011 -
12 1100 C
»Binary is long to write. Write with y 110 .
15 1111 F

hexadecimal: 1’'hB (= 1 hex)

How to represent negative values with bits?
* Negative values are represented with two's complement

> Most significant bit (MSB) represents —2™~1 (n is total bits)
MSB LSB (Least significant bit)

\ N4
4b’ 1011

» Other bits represents positive bits.
»4b'1011 = + 1x2* + 1x2° = -5

»So0 4 bits can represent numbers from -8 to 7.

*Values with two’s complement are called sighed values.

Comparison between signed and unsigned

* What number does 4’b1011 represent?
>lsis 11?7 = 1 x23 4+ 1 x21 + 1 x2° “unsigned”
>lsit-5? = 1x(—23) + 1x2 + 1x2° “signed”

* Need to define if binary value is “unsigned” or “signed”

>reg signed [3:0] a; // Binary will be signed.
>reg [3:0] b; // Binary will be unsigned.

Decimal points (Two methods)
*Fixed point representation: Integer bits + Fractional bits

» Position of decimal point is fixed.

>Example: (binary) 101.11 =24 +2%+ 271 4+ 272 = 5.75

— Half-precision@® ——
~—7

* Floating point representation: |« e
AR N ﬁ@ﬁﬁ_;\é\é’mé\;\5; = -27.15625

»Decimal point floats.

»Used in computers

Al x (24 0.607265625) = -27.15625

DECimaI pOintS in FPGAS Nice reference: Link
*Floating point arithmetic is difficult to implement with

digital gates. Uses lots of resources. (Don’t recommend)

* However fixed point (4, —,X) calculation is easy.
Binary addition Unsigned Signed Fixed point (two bit fraction)

4’b0010 2 2 0.5
+4’b1011 11 5 2.75
= 4’1101 13 -3 3.25

* Unsigned, Signed, Fixed point (4+, —,X) are identical!

https://projectf.io/posts/fixed-point-numbers-in-verilog/

Verilog Operator Name

Operators e

() parenthesis

! logical negation

*There are many operators. =k

& reduction AND
| reduction OR
~& reduction NAND
~| reduction NOR
1 T A reduction XOR
»Most can be used in synthesis.
+ unary (sign) plus

unary (sign) minus

» Divide and modulus are difficult to (1 concatenaton

{n replication
* multiply
.) / divide
0,
synthesize. (Don’t recommend) % module
+ binary plus
- binary minus
. << shift left
1 >> hift right
**Could use look up tables instead. Shit i
> greater than
>= greater than or equal to
< less than
<= less than or equal to
== case equality
A I= case inequality
o C & bit-wise AND
B A bit-wise XOR
- | bit-wise OR
&& logical AND
_ _ , | logical OR
Jaebak Kim (Korea University) Auguist 26, 2025 (1st Korea HEP FPGA Forum) > o 23
2. condi

Break time

*How much did you understand? www.kahoot.it

Assigning values
*For body logic

»assign var_a = 4°b1100;

*For procedural block
assighment: var_a 4°b1100;

assighnment: var_a = 4’b1100;

* 7

» First understand “synchronous logic”, “always block”, and

“concurrency”

Assigning values
*For body logic

»assign var_a = 4°b1100;

*For procedural block
assighment: var_a 4°b1100;

assighnment: var_a = 4’b1100;

* 7

» First understand “synchronous logic”, “always block”, and

“concurrency”

Synchronous logic (= clocked process)

*Logic that changes at intervals of time x| [F R R
»Example: Logic changes at rising edge of clock.|
» Logic has synchronized timing (through flip- 02
flops). AND

Q3

* Opposite is asynchronous logic (Logic

Count ' 000 ' 001 ' 010 ' 011 100|

changes as soon as possible)

Synchronous logic (= clocked process)

* Implemented with flip-flops

* Focus on AND?2
1. A_FF, B_FF changes.

2. AND?2 takes 3ns to work
3. AND2_FF changes.

* There are multiple steps.

* How can Verilog model this?

FF is flip-flop
A — FF FF
B FF |T:I:Is)23ns> FF
A_FF | 4ns |
B FF _ -
AND2 s
AND2_ FF

Always block

* Statements assessed line by line in sequence.

*There is and

has two purposes.

> Used for simulation. Tells when to evaluate

statements. If variable changes, evaluate.

» Used to indicate synchronous logic for

synthesis. (posedge — positive edge)

always @(
begin

end

)

Always block (reset) always @|posedge clk) begin

if (reset) begin
*Reset sighal could be synchronous or // set things

end else begin

// do things
asynchronous. ond

/ end

»Synchronous: reset accepted only at

always @(posedge clk or
clock edge. posedge reset)
begin
if (reset) begin

// set things

end else begin

// do things
end
end

» Asynchronous: rest always accepted

Evaluation of blocks
* Evaluation is done in steps.

1. (Mainly for simulation) Event occurs to

always @(A)
begin

start evaluation. Event is when variable |®"°

in changes.

“new” B will have value of “current” A
“new” C will have value of “current” B

2. Schedule to change value for statements.

At this step, values do not change.

3. Values are changed.

“new” B and “current” B
are different.

Synchronous logic and
block evaluation relation

*Synchronous logic and block

evaluation are similar

FF

—| Operation

Clock

—! FF

Synchronous logic

Block evaluation

Input flip-flop changes.

Sensitivity list event.

Operation takes time

Schedule to change value.

Output flip-flop changes.

Value changes.

always @ (

end

) begin

*always block can create synchronous logic.

Evaluation of statements in blocks.

* Non-blocking assignment: <=

» Assignment is done with scheduling and

then changing value.

*Blocking assighment: =

»Value is changed immediately.

always @(A)
begin

end

B is value of “current” A
“new” C will have value of B

How are non-blocking, blocking assignment used?

*Generally used in synchronous logic (Clocked process)

»General logic is written with <= to model
flip-flops.
»When we want to make a nickname, we

can use = (B is a nickname for A[2:0])

»When we want to write a operation in

multiple lines, we can use =

always @(
begin

B = A[2:0];
C <= B+1;

//D<=E+F+G+H;
D 1=E+F;

D 2=G+H;

D<=D _1+D 2;

end

)

Always block (last statement wins)

e Statements are assessed line by line in

sequence.

*Last statement will overwrite previous

statement.

always @(
begin

end

)

In body logic, assigh multiple
times causes error.
assess statements at

same time.

*So assigning a variable multiple
time causes an error.

> Can’t not know what variable

should be.

‘include “folder/sub.v”

module example #(
parameter nbit = 8

)

(
input wire [nbit-1:0] A,
input wire clk,

output wire [nbit-1:0] B
);

wire short_A;
reg [nbit-1:0] cnt;

assign short_A = A[nbit-2:0];

assign short_A = A[nbit:2];

endmodule

Using modules inside other modules
*Verilog is structured with multiple modules.

»Instead of writing long top module,
Top module

multiple modules are written.

Module A Module B

*There is code to define a module. Module C

*There is code to use(“instantiate”) Module D

a module.

Using modules inside other modules

*There is code to define a module.

*There is code to use(“instantiate”)
a module.

»Can make multiple copies of the

module with instantiation.

—

N\

module find_higgs (
input wire mu_p,
input wire mu_m,
output wire higgs);

find_higgs hunterl (
.mu_p (first_mu),
.mu_n (second_mu),

.higgs (higgsl));

find_h1iggs (
.mu_p (third_mu),
.mu_n (fourth_mu),

.hi1ggs (higgs2));

Instantiation with setting parameters Default is 8.

module example #(j/

* A module can be defined to have sarameter nbit = 8)
(
a static parameter. (Can’t change I e e A
output wire [nbit-1:0] B
for a made firmware));
. . . . example #(
* Can instantiate with certain &nbit (5))
.A (bottom),
parameter. .clk (clk4@mhz),
.B (charm)
D;

How to make many copies of a module/code
* Generate block: Can replicates design multiple times or

conditionally.

» Generate block is static.

»Copy and paste
multiple time. Can’t
dynamically change how

many times.
Called as unrolling a for loop.

genvar 1; // loop index
generate
for (1=0; 1 < 5; 1 =1 + 1) begin
find_higgs hunter(mu_p[1], mu_n[1], higg[i]);
end
endgenerate

module #(parameter c) my_design(input a, output b);

generate
1f (c) begin
find_higgs hunter(a, b);
end else begin
find_z hunter(a,b);
end
endgenerate

For loops

*For loops can be placed in generate block and also in

always block.

*For loops in always
block can be dynamic,
but requires lot’s of

resources. (Not N\

always @(posedge clk) begin
integer 1; // loop 1ndex
for (1 =5; 1>0; 1 =1 - 1) begln
data_out[1] <= data_out[1-1];

end

end

‘Need to create circuits for all possibilities.

recommended)

If/else

*|f/else can be placed in generate blocks and always

blocks. always @(posedge clk) begin

e Recommended to consider all if (a == 1) begin
\\ statements

IR end else 1f (a < 5) begin
possibilities. W Statemegts) beg
L . end else begin
» Recommended to write “else”. \\ statements

end
end

case

*Case can be placed in generate block and always block.

* Commonly used in “Finite State ase CCOUNTER)
o . 2’b00 : begin
Machines” (FSM) to consider cases //dstatements
en

2°b@1 : begin
// statements
end
default: begin
// statements
end
endcase;

of different states.

case vs if/else

 “if/else” conditions can have
priority, while case conditions
do not.
»a == 1 has high priority.
* Priority conditions require

maore resources.

always @(posedge clk) begin

1f (a == 1) begin
\\ statements

end else 1f (a < 5) begin
\\ statements

end else begin
\\ statements

end

end

e Case can use less

resources.

Break time

*How much did you understand? www.kahoot.it

Libraries in VHDL

*VHDL tries to be explicit.

* Need to explicitly write what libraries will be used.

»Verilog has a default library built in.

e General libraries for VHDL:

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.NUMERIC_STD.ALL;

Verilog vs VHDL——

~N

module example #(
parameter nbit = 8

input wire [nbit-1:0] A,
input wire clk,
output wire [nbit-1:0] B

);

wire [nbit-2:0] short_A;
reg [nbit-1:0] cnt;

assign short_A = A[nbit-2:0];

always @(posedge clk) begin
cnt <=short_ A+ 1;

end

endmodule

library IEEE;
use IEEE.STD _LOGIC_1164.ALL;
use IEEE.NUMERIC_STD.ALL;

entity example is
generic (nbit : integer :=8);
port (A :instd _logic_vector (nbit-1 downto 0);
clk : in std_logic;
B :outstd logic_vector(nbit-1 downto 0));
end example;

architecture behavior of example is
signal short_A : std_logic_vector(nbit-2 downto 0);
signal cnt : unsigned(nbit-1 downto 0);
begin
short_A <= A(nbit-2 downto 0);
process (clk) begin
if rising_edge(clk) then

cnt <= unsigned(short_A) + 1;
end if;
end process;

end behavior;

VHDL signal

*VHDL “signal” is same as Verilog wire and Verilog reg.

» Everything is just a signal.

wire or reg ' wire onreg| wire

Defining a signal

signhal A : std_logic := ’0@’;
signal cnt : std_logic_vector(nbit-1 downto @) := (others=> ‘0’);

* Keyword is signal.
*Define name.
* Define type.

* Possible to define initial value.

Jaebak Kim (Korea University) August 26, 2025 (1st Korea HEP FPGA Forum) 49

VH DL doesn’t haVe |n|t|a| bIOCk Similar to always block
!

*VHDL doesn’t need initial block. It is just a process.

process (clk) begin
if rising_edge(clk) then
cnt <= unsigned(short_A) + 1;

always @(posedge clk) begin

cnt =short_A + 1; cnt2 <= unsigned(cnt) + 1;

end if;
end process;

cnt2 =cnt+ 1;
end

initial begin
#10 fake _clk=1'b1
#20 fake clk=1'b0
end

process begin
wait for 10 ns;
fake clk <="1’;
wait for 20 ns;
fake clk <="0";

end process;

VHDL commenting

indicates comment

is multi line comment. (Available since VHDL-2008)

cnt <= unsigned(short_A) + 1; increment by 1

this 1s
a multi-1line
comment

VHDL data types
*std logic: 1 bit being either 0, 1, Z, X
*std logic vector: multi-bit std logic
»Top module port must be std _logic or std _logic_vector

»Inner modules can have any type for port

» Can not do math.

VHDL data types
*unsighed: Indicates bits are unsigned. Can do math.

*signed: Indicates bits are signed. Can do math.

*Type casting: VHDL uses casting a lot.
»VHDL is strongly typed.

»Changing from one type to another.

Type casting
*VHDL is a strong typed language.

»Need to convert types.

> There are functions that

my_u_val <= (my_slv_val)
my_slv_val <= (my_u_val)

my_s_val <= (my_slv_val)
my_slv_val <= (my_s_val)

Arrays: Need to define type for array
Verilog

reg [7:0] cnt [0:3][0:3]; // 4x4 matrix, each element 8 bit

cnt[0][1] = 8’b0000_0001;
cnt[0][1][0] = 1°b1;

VHDL

type byte_t 1s std_logic_vector(7 downto 0);
type matrix_t 1is array (0 to 3, 0 to 3) of byte_t;
signal cnt : matrix_t := (others => (others => (others => '0")));

cnt(@, 1) <= b"0000_0001"; -- Multi bit uses “”
cnt(@, 1)(@) <= '1’; -- Single bit uses ¢’

Jaebak Kim (Korea University) August 26, 2025 (1st Korea HEP FPGA Forum) 55

Assigning values

* Non-blocking assignment: var_a b”1100”;
*Blocking assignment: Similar to always block
!
»Need to define “variable”. Can only be used in “process"
process(clk)
variable temp : unsigned(7 downto 0); -- variable declaration
begin
1f rising_edge(clk) then
temp unsigned(din) + 1; -- immediate update
end if;
end process;

Process is equivalent to always block

conceptis verilog
always @(posedge clk) begin
the same as Verilog. engnt <= short_A + 1;

Sensitivity list

which evaluates VHDL /

statements at clock edge, | Process (cli) begin

ct ep e ” cnt <= unsigned(short_A) + 1;
write ”if rising_edge(clk) end if:

end process;

Instantiation of modules

*Generally need to
define module

(= Component)

*Then can instantiate

component.

Jaebak Kim (Korea University)

architecture behavior of top 1s
-- Component(Module) declaration
component find_higgs
port (. mu_p : 1n std_logic;
mu_m : 1n std_logic;
higgs: out std_logic);
end component;

begin
-- Component 1instantiation
hunterl : find_higgs
port map (mu_p => first_mu,
mu_n => second_mu,
higgs => higgsl);
end architecture;

August 26, 2025 (1st Korea HEP FPGA Forum) 58

Instantiation of modules

* Also possible to

architecture behavior of top 1is

begin
-- Component 1instantiation
hunterl : find_higgs
port map (mu_p => first_mu,

mu_n => second_mu,
higgs => higgsl);
end architecture;

Instantiation with setting parameters

*Verilog parameter

= VHDL

*|n declaration

(o 7)

*|n Instantiation

(o 7)

architecture rtl of top is
component example

port (A :in std_logic_vector(nbit-1:0);
clk :in std_logic;
B : out std_logic_vector(nbit-1 downto 0));
end component;

begin
example_inst : example

port map (
A =>bottom,
rst =>clk40mhz,
count => charm);
end architecture;

Making copies of components/code

Can also use

and
to replicate

design.

architecture behavior of top 1is
begin

hunter : entity find_higgs
port map (mu_p(i), mu_n(i), higg(i));

end architecture;

entity my_design 1s

generic (C : boolean := true);
end entity;
architecture behavior of my_design 1is
begin

work.find_higgs(a,b)
work.find_z(Ca,b)

end architecture;

14

process(clk) begin

” o ”n
and In if rising_edge(clk) then

process

. data_out(1) <= data_out(i-1);
For and if can also be

end if;
used in process. end process,

process(clk) begin
. . 1f rising_edge(clk) then
*Syntax is slightly

-- statements
different with generate - statements
case. -- statements

end 1f;
end process;

case

*There is also
case for both
process and

generate.

Jaebak Kim (Korea University)

case counter 1s
when “00” =>
-- statements
when “01” =>
-- statements
when others =>
-- statements
end case;

August 26, 2025 (1st Korea HEP FPGA Forum)

case C generate
when ‘@’ =>
-- statements
when others =>
-- statements
end generate;

63

*How much did you understand? www.kahoot.it

