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The Large Hadron Collider (LHC) : 
유럽입자물리연구소(CERN)의 거대 강입자 가속기
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High-granularity detectors
Order of 100 Million channels
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Big data in High Energy Physics CERN LHC raw 데이터
트리거(Trigger)하기 전 

https://datapane.com/reports/dkjK28A/big-data-2021/
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Heterogeneous computing
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CMS 데이터 트리거 원리 : 실시간 이벤트 필터링
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Current CMS Data Processing

Level-1 Trigger
(hardware based)

High Level Trigger
(software based)

After triggering, 99.9975% (39999/40000) of events are gone forever!

• 40 MHz LHC clock
• ASICS and FPGAs
• Decision made in ~4 µs
• ML inference with FPGAs
• 99.75% (399/400) events are rejected

• 100 kHz Input rate 
• CPU Farm : 30,000 CPU cores
• Decision made in 300 ms
• 99% (99/100) events are rejected
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protons

protons

(MET)

Target object: Missing Transverse Energy (MET) at Level-1
q Energy that is not detected in a detector

◦ By conservation of momentum, the sum of transverse momentum should be zero
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q MET calculated by PUPPI (Pileup Per Particle 
Identification) algorithm using CMS detector

MET = -∑𝑝!
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Resolution for MET pT & phi using DNN

10% improved for 
MET measurement 
with respect to 
standard PUPPI MET
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https://www.xilinx.com/publications/powered-by-xilinx/cerncasestudy-final.pdf
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Flow of ML to FPGA Deployment
Model training & Quantization

Output : HLS Project

Output : h5 file

Output : HDL Source code

HLS Conversion

HLS Conversion: Convert
the quantized model into
High-Level Synthesis (HLS)
code using hls4ml, allowing
it to be implemented on
hardware.

Model Training:
Use TensorFlow,
Keras or Pytorch
to design and
train a machine
learning model
with the dataset.

Quantization: Quantize the model
using QKeras to reduce its size and
computational complexity by lowering
the bit precision of weights and
activations.

FPGA Deployment:
Deploy the HLS code onto the
FPGA to execute the model in
real-time, leveraging the FPGA's
parallel processing capabilities for
optimal performance.

CMS Level-1 TriggerCH
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Quantization aware training (QAT)
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q Post-Training Quantization (PTQ) vs QAT

◦ QAT (with QKeras) 
Quantization effects are simulated during training. The 
model learns to adapt to low-bit precision (e.g., 
quantized weights and activations).
→ Higher accuracy retention, hardware-friendly, ideal 
for FPGA deployment.

◦ PTQ (Direct Quantization)
Quantization is applied only after training a full-
precision model.
No retraining is performed, so accuracy often drops.
→ Simple to apply, but limited for resource-constrained 
hardware like FPGAs.

q Key Point
QAT provides quantized models that are both accurate 
and efficient, making them suitable for real-time 
applications such as the CMS Level-1 Trigger on FPGA.
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Quantization Aware Training with QKeras
Why QKeras?
q Extension of Keras for Quantization Aware Training (QAT)
q Directly trains with low-bit weights & activations (e.g. quantized ReLU)
q Produces hardware-friendly models for FPGA/ASIC deployment

Benefits
q Accuracy retention: Preserves performance compared to post-training quantization
q Hardware efficiency: Reduces DSP/LUT/BRAM usage on FPGA
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Integration with hls4ml
q QKeras quantized models

◦ Converted into HLS code via hls4ml
q Enables synthesis & deployment on Xilinx 

UltraScale+ FPGA for the CMS L1 Trigger
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ML Model Architecture
q PUPPI candidates as inputs 

◦ Categorical : [charge, pdg_ID]
◦ Continuous : [px, py, pt, φ, η, 

puppi_Weights]

q Training workhorse
◦ Fully connected neural network
◦ 3 hidden layers (Dense) 

Dimension: # of Particle X [64, 32, 16]
◦ Batch Normalization

q Computing MET
◦ No training parameters here.
◦ Just matrix multiplication

Trained weight X PUPPI MET
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Comparison between MET calculations
q Comparison of MET calculation

between the results of the
quantized model and the model
simulated using hls4ml.

q The test was conducted with
1000 events, using fixed-point
precision set to <32,16> which is
ideal case.

q As shown, the results of both
models align closely.
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Comparison between GenMET, PUPPI MET, QKeras MET, and hls4ml MET

FPGA : VU13P
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Demo Model Test
- Model Architecture

1 layer Model with
reduced hidden layer

dimensions

3 layers Model with 
reduced hidden layer 

dimensions

(128 X 16)

(128 X 8)

(128 X 4)

(128 X 12)
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Resources in FPGA
q Block RAM (BRAM)

◦ Memory blocks used inside the FPGA for high-
speed data storage and retrieval.

q DSP blocks
◦ Dedicated units in the FPGA for performing 

complex arithmetic operations like multiplication 
and addition.

q Flip-Flops (FF)
◦ Basic storage elements that hold data and state 

during each clock cycle.

q Look-Up Tables (LUT)
◦ Tables used to quickly perform logical operations 

by referencing pre-defined results based on input 
values.

q UltraRAM (URAM)
◦ High-capacity memory blocks designed for storing 

and processing large datasets.

CH
AN

G
-S

EO
N

G
 M

O
O

N
 (K

N
U

)

Diagram

Digital Signal 
Processors (DSPs)

Random-access 
memories (RAMs)

Xilinx VU13P FPGA
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Resources in FPGA
q Latency

◦ Refers to the total time taken for a task
to complete after it has started. Lower
latency indicates faster processing and
quicker response times.
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q Interval
◦ The time gap between consecutive

tasks or operations starting. A smaller
interval means that tasks are initiated
more frequently, improving the
system's throughput.
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Demo Model Test

• Both models were synthesized to meet the 
CMS L1 trigger requirement of an interval 
below 55.

• As expected, the 3-layer model consumes 
significantly more resources compared to the 
1-layer model.

• This is primarily because most of the 
computational tasks are handled within the 
hidden layers.

• We plan to address this through 
optimization in the future.

- Resource Utilization and Latency

FPGA : VU13P

Bongho Tae (KNU) 
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Model Dimension Latency (Cycles) Latency (abs.) Interval Pipeline

1-layer 128 X 12 23 62.100 ns 8 Yes

3-layer 128 X [16,8,4] 168 0.454 us 54 Yes

Clock period: 2.7 ns
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Exploring Different Quantization Schemes
- Performance with 1.58-bit Precision

Bongho Tae (KNU) 

§ Background
§ Tested extreme case of very low precision (1.58-

bit)
§ Goal: check how much performance is kept with 

such quantization
§ Method

§ Applied 1.58-bit quantization to both weights 
and activations

§ Compared against Precision <8,2> baseline
§ Results

§ MET response and resolution remain stable
§ Only small differences in resolution observed
§ No large performance loss

§ Even ultra-low precision (1.58-bit) can keep 
reasonable performance, useful for FPGA 
optimization

Precision <8,2> 1.58-bitVS

Precision
<8,2>
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Different Approaches to Quantized MET Regression
- GNN-based Model

MET

JEDI-net: a jet identification algorithm based on interaction networks

FCNN GNNVS

Jiwan Chae (KNU) 

Motivation
q Baseline model: fully connected network (simple, fast).
q Alternative: graph-based model to include relations 

between particles.

Method
q Candidates treated as nodes, kinematic variables define 

connections.
q Same training and quantization flow applied to both 

models.

Results
q FCNN and GNN show similar overall performance.
q Graph model keeps stable resolution, especially in high-

MET region.

A useful alternative, currently under optimization for 
FPGA implementation

CH
AN

G
-S

EO
N

G
 M

O
O

N
 (K

N
U

)

https://link.springer.com/article/10.1140/epjc/s10052-020-7608-4
https://link.springer.com/article/10.1140/epjc/s10052-020-7608-4
https://link.springer.com/article/10.1140/epjc/s10052-020-7608-4
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FPGA Firmware simulation and implementation
1. APx Firmware Simulation
q Verify that the algorithm functions correctly on the APx board through 

simulation, and to test data transfer processes and performance.
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q Simulation Process:

◦ The operating environment of the board is virtually set, and the algorithm is tested on how it processes input 
data.

◦ The speed and accuracy of data processing through the GT link are assessed.

2. APx Firmware Implementation
q Deploy the algorithm onto the APx board and confirm real-time operation.

q Implementation Process:

◦ The algorithm, validated through simulation, is uploaded to the physical board.

◦ The algorithm is implemented on a Xilinx Vertex UltraScale+ FPGA, and resource usage, latency, and other 
performance metrics are monitored.

◦ The efficiency of resource usage by individual sub-algorithms is verified.
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Examples of Future Tasks
- APx Firmware Simulation

Signal Group
Data sequenceWave form

• Waveform used to check how each signal changes 
over time

• It is used in the hardware debugging and verification 
process.

• It checks whether the timing or value of a specific 
signal changes correctly and whether the designed 
logic operates as expected.

- CL to GT Link: 54 words
6 Time Multiplexer (TMX)×360MHz/40MHz=54

- Data Sending Sequence (for GT)
12 Jets*2 words(24 words),
HTMHT*2 words,
12 Jets with Large radius*2 words(24words),
HTMHT with Large radius*2 words
MET*2 words
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APx Firmware Implementation

q FPGA resource utilization test
◦ The different colors represent

the distribution of resources
used by specific sub-algorithms
within the Puppi Algorithm
when implemented on a Xilinx
Vertex UltraScale+ VU9P FPGA.

◦ This visual representation aids in
optimizing resource allocation
and supports the efficient
execution of the algorithm on
the FPGA.

CH
AN

G
-S

EO
N

G
 M

O
O

N
 (K

N
U

)

SL
R2

SL
R1

SL
R0

CMS APx board

Junwon Oh (KHU) 
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Conclusion Remarks & Outlook 
Challenges for HL-LHC
q Complex data representation and detector environment
q Severe computational restrictions

Our Work
q Demonstrated real-time ML application for CMS Level-1 Trigger
q Achieved faster inference, mandatory for HEP triggering systems
q ML-based MET shows better resolution than PUPPI

Outlook
q Still room for improvement with Transformer-based models
q Plan to test with high-MET physics samples
q Deployment using hls4ml on FPGA
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MET distribution

We have also observed that the MET distribution closely resembles the truth distribution, confirming its similarity.
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Gen MET vs Predicted MET

● epochs : 100

● units : 64 32 16

● model : JEDI-net (DNN)

● optimizer : Adam
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MET Response

We have verified that in areas with sufficient statistics, ML MET exhibits a closer approximation to the truth value 
compared to PUPPI MET.
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Customized hls4ml Flow Leveraging Vivado HLS

q Xilinx Vivado HLS
◦ Creating machine learning algorithms for the CMS level-1 trigger. 

q The hls4ml tool has a number of configurable parameters that enable users 
◦ Customize the space of latency, initiation interval, and resource usage tradeoffs for their application. 
◦ Perform the optimization through automated neural network translation and FPGA design iteration.
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Demo Model Test : 1 layer Model
- Model Architecture

1 layer Model
Reduced hidden layer

dimension

• Set Precision to 
ap_fixed<11,2> for all outputs.

• Follow the flow of the last 
model, but reduce the number 
of hidden layers. 

• Set Conv1D layer to 1 and 12 
nodes, unlike the last model 
(64,32,12).
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Demo Model Test : 3 layer Model
- Model Architecture

3 layers Model with 
reduced hidden layer 

dimensions

• Set Precision to ap_fixed<11,2> 
for all outputs.

• Follow the flow of the last model, 
but reduce the dimensions.

• Set Conv1D layer to (16,8,4), 
unlike the last model (64,32,12).
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