FPGA in DAQ of Dual-Readout Calorimeter

EO Yun

On the behalf of Korea Dual-Readout Calorimeter team

1st Korea HEP-FPGA Firmware Developers' Forum 2025

2025 August 25

What did the Yonsei HEP?

- Dual-Readout Calorimeter
 - Fiber-based sampling calorimeter.
 - We get 2 kinds of readout channels : Scintillation and Cerenkov
 - Scintillation : all charged particle
 - Cerenkov : light particle (EM particle)

 W/ dual-readout correction, the dual-readout calorimeter can get good hadronic energy resolution.

What did the Yonsei HEP?

We conducted the testbeam on SPS and PS several years (2022 to 2025).

Why the FPGA is needed in R&D on DRC

- Dual-Readout Calorimeter is longitudinal unsegmented calorimeter.
 - W/ time of Arrival information, longitudinal depth is reconstructed.
 - High granularity and good time resolution is required for 3D reconstruction of particle.
- Dual-Readout Calorimeter identifies the particle using time information.
- We decided to build the DAQ system using the DRS4 with a high sampling rate, and designed a customized FPGA-based DAQ to handle multiple channels.

Domino Ring Sampling (DRS4)

- Ultra-fast analog sampler up to 5 GSPS, using Switched Capacitor Array (SCA) technology.
- 9 input channels, each with 1024 sampling cells for waveform storage.
- Sub-10 ps timing resolution achievable after calibration (non-uniform bin size correction required).
- Compact and low-power (~50 mW/channel), efficient alternative to Flash ADCs.
- Widely used in HEP detectors, PET scanners, and fast timing applications.

Evaluation kit

Specification of DAQ system

Our DAQ system consists of DAQ and TCB boards (NOTICE).

DAQ board

- Data AcQuisition board
- Each board cover 32 channels
- DRS4 chip

- Trigger and Clock Board
- Handles DAQ boards
- Set the all configuration

DAQ specification

	Spec
Dynamic range	4096 ADC / 1 V
bins	1023

Time window

Sampling	Time per bin	Total window (1023 bins)
5 GHz	200 ps	~ 200 ns
2.5 GHz	400 ps	~ 400 ns
1.25 GHz	800 ps	~ 800 ns

DRC DAQ system

Setting variable system

DAQ upgrade (Data acquisition mode)

Waveform mode

- Save waveform data.
- Data size is 960 kB in one event. Heavy & slow but detail
- Fast mode
 - Energy: integral waveform.
 - Timing : use leading edge method.
 - Data size is 3.75 kB in one event. Light & fast

4096 ADC = 1V

Waveform

DAQ upgrade (Time window)

- In test beam, in order to identify the particle and measure position, the various auxiliary detector.
 - Problem: because of cable latency and physical length, we cannot gather all signal in one window.

Time window

- Previous : Set the time windows in one variable (sampling rate & trigger delay) on TCB.
- Updated : Set the time windows individually for each DAQ.

DAQ upgrade (time calibration)

- DRS4: The chip process constraints lead to non-equidistant sampling bins in time.
- Time calibration
 - Measure and calibration the Δt of each sampling bins.
 - Add header the stopped bin of DRS.
 - Study is ongoing...

Fig. 3: The correlation between voltage differences Δu_i and time differences Δl_i of a rising edge can be used for the local TC of an SCA chip.

Local calib

Fig. 4: First 77 cells of the 1024 cell array of a DRS4 sampling a 100 MHz sine wave at a sampling speed of 2.5 GSPS. This signal is used for the local TC and the global TC.

Global calib

Δt distribution by bins

Summary

- We conduct the Dual-Readout Calorimeter R&D.
- The FPGA enables the implementation of a customized DRS4-based prototype DAQ system.
- We upgrade the prototype DAQ.
 - Design fastmode in order to prepare for high data rate.
 - Separate the time window individually by each DAQ boards.
 - Add stopped bin information for time calibration.

Back up

Remaining Firmware upgrade plan

- Apply the time calibration
- Upgrade the fastmode based on time calibration
- Etc...