

# Introduction to HDL simulation, FPGA resources, and IPCores

## Why do we simulate HDL code?

 Generating firmware takes many minutes to hours depending on size of logic.



- Not possible monitor all signals in logic for a FPGA.
  - Example: Let's say we have y = f(x) firmware in FPGA. Can't monitor all logic inside function f(x). So debugging is difficult.
- Simulation generally used to debug logic easier.

#### How can we simulate HDL code?

- A HDL module has input ports and output ports.
- Must provide input data to HDL module to do simulation.

```
module half_adder (
  input wire A,
  input wire B,
  output wire SUM,
  output wire CARRY
);
```

Logic that provides input data is called "stimulus"

## How can we simulate HDL code?

- We make a "testbench" HDL
  - code for simulation.
    - ➤ Not used in synthesis of firmware
    - Can use non-synthesizable HDL.
      - ❖Ex) Read from txt file.
- In simulation, all signals in logic can be seen.



# Writing simple stimulus

- Generate signals at timing
  - ➤ Define time unit
  - >Assign value to signal
  - > Delay by number of time units
  - >Assign new value to signal



Time precision:
When to do rounding

`timescale 1ns/1ps

$$a = 1'b0;$$

$$a = 1'b1;$$

## Writing simple stimulus

Simulation code is typically written in

initial blocks.

- ➤ Block of code is started at beginning of simulation time 0 unit.
- ➤ Only executed once in entier simulation.
  - Normally HDL code is constantly extecuted.

```
`timescale 1ns/1ns
module testbench;
reg a;
initial begin
 a = 1'b0;
 a = 1'b1;
 # 1;
end
endmodule
```

## Ways to write stimulus

- Generating 100 MHz clock
  - >Start at 0 and switch at every 5 ns.

reg myclk;

initial begin

myclk = 0;

forever #5 myclk = ~myclk;

end



## Ways to write stimulus

Also possible to read txt file

```
Input.txt
10 15
25 13
12 11
...
```

```
`timescale 1ns/1ps
module tb; // testbench
  reg [7:0] a, b; // Hold integer values (0-255)
  integer fd; // File descriptor
  adder dut (a, b, sum);
  initial begin
    fd = $fopen("stimulus.txt", "r");
    while (!$feof(fd)) begin
      $fscanf(fd, "%d %d\n", a, b); #10;
    end
    $fclose(fd);
  end
endmodule
```

## How does simulation handle concurrency?

- Simulation is done on CPU (Does one task at a time).
  - ➤ But HDL can have many tasks at same time.
- So simulation does below
  - 1. Time step is paused.
  - 2. Run statements line by line. Schedule when signal change.
  - 3. If all statements are ran, update signals and go to next time step.

## Delta cycles

- Multiple statements can have same time step.
- In CPU, they are different "delta cycle", but in HDL they have same time.
- Sometimes, bad HDL logic
   depends on delta cycle. \_



Firmware on FPGA and simulation will show different results

# Synthesizable test bench

- Sometimes, a synthesizable test bench is used to check if module works correctly.
- Could also simulate this synthesizable test bench.



#### **FPGA** resources

There are DSP (digital signal processor)

and BRAM (Block RAM) inside FPGAs.

Multiplication can be done on DSP.

Ref on AMD DSP

➤ Artix-7 DSP can do up to 25 bit × 18 bit

#### Ref link

| Device Name                                         | Z-7020          |
|-----------------------------------------------------|-----------------|
| Part Number                                         | XC7Z020         |
| Xilinx 7 Series<br>Programmable Logic<br>Equivalent | Artix-7<br>FPGA |
| Programmable Logic<br>Cells                         | 85K             |
| Look-Up Tables (LUTs)                               | 53,200          |
| Flip-Flops                                          | 106,400         |
| Block RAM<br>(# 36 Kb Blocks)                       | 4.9 Mb<br>(140) |
| DSP Slices<br>(18x25 MACCs)                         | 220             |

multiplication. Good use below 25 or 18 bits in logic.

➤ Can do multiplication using CLB, but uses lots of CLBs.

C <= A \* B; // Vivado will normally automatically use DSP for this. // But could also use CLBs if bit width is small.

### **BRAM**

- Each BRAM stores up to 36,864 bits.
  - Can be configured as two 18 Kb RAM
- Can write/read up to 72 bits per clock.
  - Then there can be 512 of the 72 bits.



#### Ref on AMD BRAM



## BRAM has multiple modes

- True dual port mode
  - > Can write/read memory simultaneously
  - Can use port A and port B independently and simultaneously
- Simple dual port mode
  - > Can write/read memory simultaneously.



#### Where are BRAM used?

- Used to store information.
- Used to "cross clock domains". (Topic for later)
  - >A logic using a certain clock is said to be in a clock domain.
  - ➤ Need to be very careful when moving data to different clock

domain.



#### Where are BRAM used?

- Used to approximate a complex functions f(x)
  - >Complex functions can be difficult to implement with CLB.
  - > We define BRAM address to x.
  - Firmware set to have initial BRAM data, which is approx. f(x)

| X     | Address Q1.3 (3'b fraction) | Real<br>cos(x) | Approx. cos(x) | Data Q1.4 (4'b fraction) |
|-------|-----------------------------|----------------|----------------|--------------------------|
| 1     | 4'b1000                     | 0.540          | 0.5            | 5'b01000                 |
| 0.875 | 4'b0111                     | 0.641          | 0.625          | 5'b01010                 |
| 0.75  | 4'b0110                     | 0.731          | 0.75           | 5'b01100                 |
| 0.625 | 4'b0101                     | 0.811          | 0.812          | 5'b01110                 |

## BRAM settings.

- AMD BRAMs have many settings that change BRAM behavior.
  - True dual port or Simple dual port.
  - ➤ When writing data, set BRAM output to written data OR previously stored data OR do not change.





#### **IPCore for BRAM**

• To make it easier to use BRAM, could use AMD IPCore

(IPCore: Intellectual Property Core)

 There is a AMD IPCore GUI tool to create a memory module.



## Vivado also provides code on how to use IPCore

- Vivado can generate example design project for IPCore
  - >HDL will sometimes be Verilog and other times VHDL...
- Generally creates a synthesizable test bench.



#### **ILA and VIO IPCores**

There are commonly / heavily

used IPCores.

>ILA (Integrated Logic Analyzer)

➤ VIO (Virtual Input Output)

What is a logic analyzer?

➤ Monitors many digital logic signals

➤ Used to debug design logic.



## Integrated Logic Analyzer (ILA) IPCore

Instead of expensive logic analyzer (\$10,000), could

make HDL module (=ILA IPCore) to monitor FPGA logic.



## Virtual I/O (VIO) IPCore

(FPGAs time scale is nanoseconds)

Similarly can send "slow" data to FPGA (Also receive.)

(miliseconds)

> Because computers are slow, sent data will be slow.



#### **ILA and VIO IPCores**

- ILA and VIO used for debugging logic.
- ILA and VIO IPCore receives a clock, where the signals monitored at clock.
  - ➤ [Important] If design logic using "clock A", (Do not cross clock domain)

    ILA should also use "clock A".
  - Can not monitor "clock A" with ILA.



How much did you understand? www.kahoot.it