Overview of EIC Physics

Chueng-Ryong Ji North Carolina State University

Hot and Cold QCD

RHIC@BNL LHC@CERN

JLab

Cold and Hot QCD

JLab

ELECTRON-PROTON/ ION COLLISION

The scientific foundation for the EIC has been built for over two decades.

P. Achenbach, D. Adhikari, A. Afanasev et al.

Nuclear Physics, Section A 1047 (2024) 122874

Outline

- 1. Progress in Hot QCD
- 2. Progress in Cold QCD
- 3. EIC Project
- 4. Summary and Outlook

Progress in Hot QCD

$$R_{
m AA}(p_T) = rac{dN_{
m AA}/dp_T}{N_{
m coll}dN_{
m pp}/dp_T}$$

long range rapidity correlations Color Glass Condensate Glasma "ridge" events

Chiral Magnetic Effect

Phys. Rev. Lett. 103 (2009) 251601

Heavy Quark vs. Light Quark "dead cone" effect

Progress in Cold QCD

Femtoscale imaging

Taking "pictures" of the proton as a function of scale

In x

What are we looking for?

Images of protons in coordinate and momentum space

How do we do it?

Through experimental data in factorizable processes

Focus on electron-induced reactions that can be realized at EIC and

JLab

Better Work in Forward Direction

Theoretical Simulation of the Virtual Meson Production in the Forward Direction

Analysis of virtual meson production in a (1+1)-dimensional scalar field model

Yongwoo Choi⁰, ^{1,*} Ho-Meoyng Choi⁰, ^{2,†} Chueng-Ryong Ji⁰, ^{3,‡} and Yongseok Oh⁰, ^{1,4,§}

¹Department of Physics, Kyungpook National University, Daegu 41566, Korea

²Department of Physics Education, Teachers College, Kyungpook National University, Daegu 41566, Korea

³Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202, USA
⁴Asia Pacific Center for Theoretical Physics, Pohang, Gyeongbuk 37673, Korea

(Received 10 December 2021; accepted 30 March 2022; published 17 May 2022)

Electron-Proton/Ion Collider (ePIC)

- Highly polarized electron (~70%) and proton (~70%) beams;
- Ion beams from deuterons to heavy nuclei such as gold, lead, or uranium;
- Variable e+p center-of-mass energies from 28-100 GeV, upgradable to 28-140 GeV;
- High collision electron-nucleon luminosity 10³³-10³⁴ cm⁻² s⁻¹;
- · The possibility of more than one interaction region.

The Future: Challenges & opportunities

☐ The power & precision of EIC:

☐ Reach out the glue:

$$\frac{dg_1(x,Q^2)}{d\ln Q^2} = \frac{\alpha_s}{2\pi} P_{qg} \otimes \Delta g(x,Q^2) + \cdots$$

The Future: Challenges & opportunities

☐ One-year of running at EIC:

Wider Q² and x range including low x at EIC!

No other machine in the world can achieve this!

- ☐ Ultimate solution to the proton spin puzzle:
 - \Rightarrow Precision measurement of $\Delta g(x)$ extend to smaller x regime
 - ♦ Orbital angular momentum contribution measurement of GPDs!

EIC Physics

- Proton spin
- Nucleon tomography and the origin of mass
- Gluon dynamics in a dense medium
- Nuclear modifications of parton distributions
- Hard probes in cold nuclei
- Fundamental symmetry physics
- AI/ML in data analysis
- Nuclear data

The case for an EIC Theory Alliance: Theoretical Challenges of the EIC R. Abir, et al. [arXiv:2305.14572 [hep-ph]]

- WORKFORCE DEVELOPMENT AND DEI
- OPPORTUNITIES WITH AI/ML
- INTERSECTIONS OF QUANTUM INFORMATION SCIENCE AND EIC

Summary and Outlook

- We summarized the present state of EIC-related physics and identified the theory progress needed for maximizing the impact of EIC physics.
- There are many theoretical challenges that have to be addressed in the coming decades.
- Examples include higher order pQCD calculations interfacing them with phenomenology and lattice QCD.
- We need to pay attention to the importance of strong theory support alongside the experimental program to realize the full discovery potential of the EIC physics.