Physics Potential with the Barrel Imaging Calorimeter

KHEP 2024 Spring Meeting
May 23rd 2024
Beomkyu Kim
Sungkyunkwan University

Outline

- Key Physics Questions with Electro-Ion Collider
- Electron-Ion Collider
- ePIC Experiment
- DIS Processes
- Barrel Calorimeter Requirement
- Performance of the Barrel Imaging Calorimeter (BIC)
- Physics potential with the BIC
- Summary

Key science questions

Emergence of the nucleonic mass/spin

- Parton distributions inside nucleon in
 - momentum and coordinate space
- Gluon saturation
- Nuclear modification of PDF
- Colour charge through Cold Nuclear Matter

The Electron-Ion Collider (EIC)

- Polarization ~ 70%
 - e[↑] + p[↑], d[↑], He[↑]
 - e[↑] + unpolarized ions up to U.
- $\mathcal{L} = 10^{33-34} \text{cm}^{-2} \text{s}^{-1}$
 - $\leftrightarrow \mathcal{L}_{int} = 10-100 \text{ fb}^{-1}/\text{year}$
- h: 41-275 GeV, e: 5-18 GeV
- The first experiment "ePIC"

EIC General Purpose Detector: Concept

Detectors for ePIC

Magnet

Tracking

Particle Identification

Electromagnetic Calorimeter

Hadronic Calorimeter

Coverage

 $\phi:360^{\circ}\ 2^{\circ}<\theta<178^{\circ}\ -4<\eta<4$

DIS processes

Charged-current Inclusive DIS $e + p/A \rightarrow \nu + X$

Semi-Inclusive DIS e + p/A \rightarrow e' + $h^{\pm,0}$ + X

Exclusive DIS
$$e + p/A \rightarrow e' + p'/A' + \gamma/h^{\pm,0}$$

Barrel Calorimeter Requirement

Charged-current Inclusive DIS $e + p/A \rightarrow \nu + X$

Semi-Inclusive DIS e + p/A \rightarrow e' + $h^{\pm,0}$ + X

Exclusive DIS
$$e + p/A \rightarrow e' + p'/A' + \gamma/h^{\pm,0}$$

Barrel Calorimeter Requirement

- Inclusive DIS
 - Up to $10^4 \ \pi^-$ background suppression at low momenta in the barrel
- General: 100 MeV $< \gamma$ energy < 10 GeV

Neutral-current Inclusive DIS $e + p/A \rightarrow e' + X$

Barrel Calorimeter Requirement

- Exclusive DIS (DVCS)
 - Up to $10^4 \ \pi^-$ background suppression at low momenta in the barrel
 - Good energy resolution (<7-10%/ \sqrt{E} \oplus (1-3%)
 - Fine granularity for good π^0/γ separation up to 10 GeV

Barrel Imaging Calorimeter

Solution: Hybrid SciFi/Pb calorimeter with a silicon tracker to precisely measure 3D image of electromagnetic shower

BIC Performance: Energy Resolution

electron photon

- Resolution extracted from a Crystal Ball fit σ
- GlueX Pb/ScFi ECal: $\sigma = 5.2\% / \sqrt{E} \oplus 3.6\% NIM, A 896 (2018) 24-42$

BIC Performance: electron/pion separation

- Separation of electrons from background in Deep Inelastic Scattering (DIS) processes
- Method: E/p cut (Pb/ScFi) + NN using 3D position and energy info from imaging layers
- e-π separation exceeds 10³ in pion suppression at 95% efficiency above 1 GeV

BIC Performance: Neutral Pion Identification

- Separation of two gammas from neutral pion well above required 10 GeV
- Discriminate between π^0 decays and single γ from DVCS, π^0 identification
- Precise position resolution allows for excellent separation of γ/π^0 based on 3D shower profile

Neutral-current Inclusive DIS

$$e + p/A \rightarrow e' + X$$

BIC Requirement: 7-10%/ \sqrt{E} \oplus (1-3%)

Existing Measurements with A ≥ 56 (Fe): Resolution, Q² (GeV²) e+A 10⁻³ 10⁻² 10-4 10⁻⁵ 10⁻¹ Parton momentum fraction, x

BLUE: CERN, DESY, Jlab, SLAC

BLUE: World data

$$rac{1}{2} = \left[rac{1}{2}\Delta\Sigma + L_Q
ight] + \left[\Delta g + L_G
ight]$$

 $\Delta\Sigma/2$ = Quark contribution to Proton Spin

Gluon contribution to Proton Spin

Quark Orbital Ang. Mom ??

Gluon Orbital Ang. Mom ??

Spin structure function g₁ needs to be measured over a wide range in x-Q² Especially low-x

Precision in $\Delta\Sigma$ and $\Delta g \rightarrow A$ clear idea Of the magnitude of $L_O + L_G = L$ Lattice Calculations: comparison

- Emergence of the nucleonic mass and spin
 - Mass: Quarkonium production cross-section at threshold at low Q²
 - Spin: BIC Requirement: 7-10%/ $\sqrt{E} \oplus (1-3)\%$, Up to $10^4 \pi^-$ background suppression
- Parton distributions inside nucleon
 - momentum and coordinate space using SIDIZ and DVCS
 - BIC Requirement: 7-10%/ \sqrt{E} \oplus (1-3)%, π^0/γ separation up to 10 GeV, Up to 10^4 π^- background suppression
- Gluon saturation: Forward rapidity
- Nuclear modification of PDF: The same BIC requirement
- Colour charge through Cold Nuclear Matter: Jet Physics

Summary

- Origin of Nucleon Spin
 - DIS with polarized electrons and protons for a large range in x and Q^2
 - Good electromagnetic calorimetry at the level of 7-10%/ $\sqrt{E} \oplus (1-3)\%$
- Multi-dimensional imaging of the Nucleon
 - Transverse Momentum Distribution measurement by Semi-Inclusive DIS
 - Generalized Parton Distribution measurement by Exclusive DIS

- Nuclear modification of PDF: The same BIC requirement
- Colour charge through Cold Nuclear Matter: Jet Physics

Backup

Strange quark parton distribution fuction

Polarized photon structure using dijets