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1. Introduction to GEM & uRWELL

« Limitation of MWPC; impossible to reduce wire spacing

= Limited multi-track resolution ~0(10mm)

* Micro Strip Gaseous Counter
- Susceptible to discharges

» Micro Pattern Gaseous Detector

- Key: suppressing discharges

— Step-by-step amplification

& separation of RO and amplification region
— Resistive detector
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1. Introduction to GEM & uRWELL

» Gas Electron Multiplier

- Step-by-step amplification

- Separation of RO and amplification region
- Extremely high rate capability

» Only CERN and Korea can produce large-size GEM foils
- GEM foils contribution of KCMS to CMS phase-2
upgrade
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1. Introduction to GEM & uRWELL

* Micro Resistive Well, the resistive version of

GEM

- Resistive layer, DLC, prevents streamer from

evolving discharge

- Self rigidity due to RO

= Simpler structure and easier assembly
= Cheap

» Experiments using (planning to use) uURWELL
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2. ePIC Detector Plan

hadronic calorimeters solenoid coils
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2. ePIC Detector Plan — ECT

* GEM+uRWELL hybrid detector

» ePIC (spokesperson, technical coordination and MPGD DSC) has requested
Korea participate in the ECT prototyping that will take place next year

- Concerns about CERN's production capacity

» To take the lead in ePIC and very charming next-generation detector
- Due to the nature of uRWELL, producer will lead the whole project

 To secure the utilization of GEM production facilities after the KCMS project

« ECT is fit Korean MPGD production capability
- BOT is too long and out of capability
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3. DAMSA Experiment

« Search for a - yy and A’ - e*e™ using beam dump of Fermi Lab PIP I
- To veto Bkg. and to detect A’ —» e*e™, tracker is needed
- uURWELL would be nice option

~ it's cheaper and harder to neutron Bkg. than Si
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4. yRWELL R&D Plan

.
Timeline MPGD Timeline .
START DATE END DATE DESCRIPTION (years)
3/1/24 12/31/24  Detectors Overall Design <1
111125 12/31/26  Pre - Production 2
111127 31/12/29  Production & QA 3
1/1/30 SLSON 05

Installation

- Completion of Fermi Lab. PIP 2 ~ 2028
- Production of CMS GEM will end ~2025

» Checking production feasibility of uRWELL is the most urgent
- Plan to attempt production of a 10 x 10cm? uRWELL in this year

* Design of production process: completed
- Procurement of parts is ongoing



5. yRWELL Production — Overview and DLC Sputtering

« GEM and uRWELL share production processes

s 5 umCu
DLCsputtered FCCL —, +— 50 ymPolyimide @ || & = = = = = = = = = = = = =
Pre-Preg " DLc —
————————
R/Oboard — y
Top Cu
Gluing ‘ ., Etching Polyimide

- The most challenging part is PI etching, which KCMS is doing well

» The DLC layer is formed by a sputtering process and are procured by ordering it
from CERN or other suppliers (domestic, long-term)
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5. URWELL Production — Gluing

~ 5 umCu
DLCsputtered FCCL — +— 50 um Polyimide
Pre-Preg DLC
R/Oboard —

Gluing '

* Pressing DLC FCCL, pre-preg and RO PCB at high temperature in a vacuum

chamber

- Will be done by PCB maker
- Common PCB pressing process, but requires know-how to construct “stack”

and to define parameters

- Stack: to regularize pressure and to control heat rreser oat —3
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5. URWELL Production — Photo & Etching
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5. URWELL Production — Post Process and Cleaning

* Ag epoxy pasting ' Service Area < Active Area » Service Area

>

-

\

Agepoxyto contactDLClayerand ground line

 Soldering connectors and cleaning
- C-cleaning & E-cleaning needs lots of know-how
- We have the know-how through KCMS GEM production




5. URWELL Production — High rate version

» Rate capability of uRWELL is limited by voltage drop due to charge drain
= Grounds can be added to increase rate capability

* PEP type high rate uURWELL

Service Area Service Area « Service Area N
< > < >

. . Go to ground
- Drilling (CNC) and plating are needed

— Long-term challenges beyond current production capability

* FCC-ee may need this type
- For ePIC and DAMSA, low rate version is more than enough
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6. The Capacitive Sharing Readout

» Spreading signal laterally using the capacitive sharing layer, ~60 um resolution
IS achievable even with 800 um pitch strip RO

- Very nice timing property
- Versatile
- NIMA 1047 (2023) 16782

Imitial electron clouds size

from triple-GEM will hit on NIMA 1047 (2023) 16782
average 2 to 3 pads of 0.4 mm DLC layer to drain charges to the ground
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50 um Kapton foil anode layer with pad size = 0.4 mm

50 pm Kapton foil transfer layer with pad size = 1.6 mm

50 um Kapton foil

transfer layer with pad size = 3.2 mm

> >
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Summary

 uURWELL, the resistive version of GEM, is very charming
- Simple structure and cheap
- ePIC, DAMSA, and FCC-ee

 ePIC has requested Korea participate ECT prototyping due to concern of
CERN’s production capacity

- It will be win-win game for Korea as well

 Studying production process has been done
— uRWELL production is feasible using the technology we already have

* 10 X 10cm? uRWELL will be produced in this year
- Procurement is ongoing
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Physics programs — spin structure of proton

* Inclusive 4;;

2
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Physics programs — spin structure of proton

- OAM
-As 5, and S, are expected to be precise, OAM will be constrained

- J4=>—J9 =~ [dxx[H(x,§ = 0,t = 0) + E9(x,& = 0,¢ = 0)], where H and E
are GPD
OAM, = ]7 =S, and OAM,; = ]9 = S,
- H and E are accessible at EIC and JLab via DVCS and DVMP

arXiv:2103.05419
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Physics programs — Multi. D. imaging of proton

Wix,b k) arxiv:1212.1701
Wigner distributions
. e
[d'b, [dk,
Fourier trf.
" 4 b, <> A E=0
flxd,) flxb) ) H(x,0,0) ¢ —
transverse momentum impact parameter $=-A generalized parton
distributions (TMDs) distributions distributions (GPDs)
semi-inclusive processes axclusive processas
# ™, — -
fdzk,. _fdfb, f‘h fd,rr" !
J t‘.‘ ol -
fix) Fi0) A L4+4E7A LD+ ..
parton densities form factors generalized form
inclusive and semi-inclusive processes elastic scattering factors

lattice calculations
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Physics programs — TMDs

y = oy psin(éa=¢s) |
dxdydpsdzddpdPf X FUU + |SJ_| Sln(gbh (.bS) FUT +

 where Fi" @9 = 3 2|, (Q)I2[R(Q3 o) ® fi5' (% 1) ® DY (2 10)1(Pr)
, where |Cy, (Q)|? perturbative coefficient, R(Q; u,) evolution factor, ﬁqu(xi Uo)
Sivers TDM, and D{ (z; o) unpolarized TMD FF




Physics programs — GPDs

» GPDs provide a connection between PDFs and form factors

* The cleanest channels to access GPDs are DVCS and DVMP
- x + & and x — ¢ are longitudinal parton momentum fractions with respect to the

+p' -
average proton momentum % before and after scattering
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Physics programs — Gluon saturation

» Will gluon density continue to increase in low enough x region?
- Probably not

splitting recombination

* BFKL evolution
- The evolution eq. that allows one to construct the PDF at low-x

- 2’;’5;’7; = ayKgrx ®N(x,77), Where rp~ 1/, (transverse distance) and Fourier Tr.
X
of N(x,rr) is related to gluon TMD
) 2 I./fo'_ﬁ\.\
« BK evolution {QS(XJ &
D g K ®N (x, 1) — ag[NCr, 7)) .
OlnC/z) © ;j"”vmmwm

N BK /.\BFKL/_\

T e

non-perturbative region ag ~ 1

« HERA implied the existence of CGC

saturation

In x



Physics programs — Gluon saturation

* Nuclear “Oomph” factor
- To access CGC, we need higher beam energy or heavy
ion collision

- Gluon fields are overlapped by Lorentz contraction and higher density g.Iuon
field can be probed wo/ increasing beam energy

- Q% (x)~AY/3 (%)’1 where 1 = 0.2 — 0.3

* Observables

- Nuclear structure function
- Di-hadron correlations

- Diffractive events
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