EIC 실험을 위한 μ RWELL 검출기 소개

2024 / 05 / 23

Inseok Yoon (SNU)

KSHEP 2024 Spring @ SNU

Content

- Introduction to GEM & μ RWELL
- ePIC detector plan and GEM+μRWELL tracker
- DAMSA experiment and μRWELL tracker
- μRWELL R&D plan
- μRWELL production processes
- Low rate version
- High rate version

Capacitive sharing RO

1. Introduction to GEM & μ RWELL

- Limitation of MWPC; impossible to reduce wire spacing
- \Rightarrow Limited multi-track resolution $\sim O(10mm)$
- Micro Strip Gaseous Counter
- Susceptible to discharges
- Micro Pattern Gaseous Detector
- Key: suppressing discharges
- → Step-by-step amplification
- & separation of RO and amplification region
- → Resistive detector

1. Introduction to GEM & μ RWELL

- Gas Electron Multiplier
- Step-by-step amplification
- Separation of RO and amplification region
- Extremely high rate capability
- Only CERN and Korea can produce large-size GEM foils
- GEM foils contribution of KCMS to CMS phase-2 upgrade

1. Introduction to GEM & μ RWELL

- Micro Resistive Well, the resistive version of GEM
- Resistive layer, DLC, prevents streamer from evolving discharge
- Self rigidity due to RO
- ⇒ Simpler structure and easier assembly
- ⇒ Cheap
- Experiments using (planning to use) μ RWELL
- LHCb
- CLAS12
- ePIC
- DAMSA
- FCC-ee

2. ePIC Detector Plan

2. ePIC Detector Plan – ECT

- GEM+μRWELL hybrid detector
- ePIC (spokesperson, technical coordination and MPGD DSC) has requested Korea participate in the ECT prototyping that will take place next year
- Concerns about CERN's production capacity
- To take the lead in ePIC and very charming next-generation detector
- Due to the nature of μ RWELL, producer will lead the whole project
- To secure the utilization of GEM production facilities after the KCMS project
- ECT is fit Korean MPGD production capability
- BOT is too long and out of capability

3. DAMSA Experiment

- Search for $a \to \gamma \gamma$ and $A' \to e^+ e^-$ using beam dump of Fermi Lab PIP II
- To veto Bkg. and to detect $A' \rightarrow e^+e^-$, tracker is needed
- μ RWELL would be nice option
 - : it's cheaper and harder to neutron Bkg. than Si

4. μRWELL R&D Plan

Timeline

MPGD Timeline			DURATION
START DATE	END DATE	DESCRIPTION	(years)
3/1/24	12/31/24	Detectors Overall Design	<1
1/1/25	12/31/26	Pre - Production	2
1/1/27	31/12/29	Production & QA	3
1/1/30	6/1/30	Commissioning & Installation	0.5

- Completion of Fermi Lab. PIP 2 ~ 2028
- Production of CMS GEM will end ~2025
- Checking production feasibility of μ RWELL is the most urgent
- Plan to attempt production of a $10 \times 10 cm^2~\mu \text{RWELL}$ in this year
- Design of production process: completed
- Procurement of parts is ongoing

5. μRWELL Production – Overview and DLC Sputtering

• GEM and μ RWELL share production processes

- The most challenging part is PI etching, which KCMS is doing well
- The DLC layer is formed by a sputtering process and are procured by ordering it from CERN or other suppliers (domestic, long-term)

5. μ RWELL Production – Gluing

- Pressing DLC FCCL, pre-preg and RO PCB at high temperature in a vacuum chamber
- Will be done by PCB maker
- Common PCB pressing process, but requires know-how to construct "stack" and to define parameters
- Stack: to regularize pressure and to control heat transfer
- Pressure: 7-10 bar, defined by FCCL
- Temperature and duration: defined by choice of pre-preg

5. μRWELL Production – Photo & Etching

5. μRWELL Production – Post Process and Cleaning

• Ag epoxy pasting

Service Area

Ag epoxy to contact DLC layer and ground line

- Soldering connectors and cleaning
- C-cleaning & E-cleaning needs lots of know-how
- We have the know-how through KCMS GEM production

5. μ RWELL Production – High rate version

- Rate capability of μ RWELL is limited by voltage drop due to charge drain
- ⇒ Grounds can be added to increase rate capability
- PEP type high rate μ RWELL

- Drilling (CNC) and plating are needed
- → Long-term challenges beyond current production capability
- FCC-ee may need this type
- For ePIC and DAMSA, low rate version is more than enough

6. The Capacitive Sharing Readout

- Spreading signal laterally using the capacitive sharing layer, $\sim\!60~\mu m$ resolution is achievable even with $800~\mu m$ pitch strip RO
- Very nice timing property
- Versatile
- NIMA 1047 (2023) 16782

Summary

- μRWELL, the resistive version of GEM, is very charming
- Simple structure and cheap
- ePIC, DAMSA, and FCC-ee
- ePIC has requested Korea participate ECT prototyping due to concern of CERN's production capacity
- It will be win-win game for Korea as well
- Studying production process has been done
- $\rightarrow \mu$ RWELL production is feasible using the technology we already have
- $10 \times 10 cm^2 \mu RWELL$ will be produced in this year
- Procurement is ongoing

Back Up

Physics programs – spin structure of proton

• Inclusive A_{LL}

$$\frac{1}{2} \left[\frac{d^2 \sigma^{\rightleftharpoons}}{dx dQ^2} - \frac{d^2 \sigma^{\rightrightarrows}}{dx dQ^2} \right] \cong \frac{4\pi \alpha^2}{Q^4} y(2 - y) g_1(x, Q^2)$$

- , where $g_1(x, Q^2) = \frac{1}{2} \sum e_q^2 [\Delta q(x, Q^2) + \Delta \bar{q}(x, Q^2)].$
 - Δg is encoded in scale violation of g_1

Physics programs – spin structure of proton

- OAM
 - As S_q and S_q are expected to be precise, OAM will be constrained
- $J^q = \frac{1}{2} J^g = \frac{1}{2} \int dx x [H^q(x, \xi = 0, t = 0) + E^q(x, \xi = 0, t = 0)]$, where H and E are GPD

$$OAM_q = J^q - S_q$$
 and $OAM_g = J^g - S_g$

- H and E are accessible at EIC and JLab via DVCS and DVMP

Physics programs – Multi. D. imaging of proton

Physics programs – TMDs

•
$$\frac{d\sigma}{dxdyd\phi_S dzd\phi_h dP_{hT}^z} \propto F_{UU} + |S_\perp| \sin(\phi_h - \phi_S) F_{UT}^{\sin(\phi_h - \phi_S)} + \cdots$$

, where
$$F_{UT}^{\sin(\phi_h-\phi_S)}=\sum_q e_q^2 |\mathcal{C}_V|(Q)|^2 [R(Q;\mu_0)\otimes f_{1T}^{\perp q}(x;\mu_0)\otimes D_1^q(z;\mu_0)](P_T)$$

, where $|\mathcal{C}_V(Q)|^2$ perturbative coefficient, $R(Q;\mu_0)$ evolution factor, $f_{1T}^{\perp q}(x;\mu_0)$ Sivers TDM, and $D_1^q(z;\mu_0)$ unpolarized TMD FF

Physics programs – GPDs

- GPDs provide a connection between PDFs and form factors
- The cleanest channels to access GPDs are DVCS and DVMP
- $x + \xi$ and $x \xi$ are longitudinal parton momentum fractions with respect to the average proton momentum $\frac{p+p'}{2}$ before and after scattering

Physics programs – Gluon saturation

- Will gluon density continue to increase in low enough x region?
 - Probably not

- BFKL evolution
 - The evolution eq. that allows one to construct the PDF at low-x
- $-\frac{\partial N(x,r_T)}{\partial \ln(1/x)} = \alpha_S K_{BFKL} \otimes N(x,r_T)$, where $r_T \sim 1/Q$ (transverse distance) and Fourier Tr. of $N(x,r_T)$ is related to gluon TMD
- BK evolution

$$-\frac{\partial N(x,r_T)}{\partial \ln(1/x)} = \alpha_S K_{BFKL} \otimes N(x,r_T) - \alpha_S [N(x,r_T)]^2$$

HERA implied the existence of CGC

Physics programs – Gluon saturation

- Nuclear "Oomph" factor
- To access CGC, we need higher beam energy or heavy ion collision

- Gluon fields are overlapped by Lorentz contraction and higher density gluon field can be probed wo/ increasing beam energy

-
$$Q_s^2(x) \sim A^{1/3} (\frac{1}{x})^{\lambda}$$
 where $\lambda = 0.2 - 0.3$

- Observables
- Nuclear structure function
- Di-hadron correlations
- Diffractive events

