Barrel Imaging Calorimeter for ePIC experiment at the Electron-Ion Collider

Sanghoon Lim
Pusan National University

KSHEP 2024 Spring Meeting

Electron-lon Collision: Giant electron femtoscope

Inclusive DIS
$$e + p/A \rightarrow e' + X$$

Semi-inclusive DIS
$$e + p/A \rightarrow e' + h + X$$

Critical measurements: electron and photon

Inclusive DIS
$$e + p/A \rightarrow e' + X$$

DIS electrons

Semi-inclusive DIS
$$e + p/A \rightarrow e' + h + X$$

SIDIS π^0

Exclusive DIS
$$e+p/A o e'+p'/A'+\gamma/h$$

DVCS photons

Detector for the EIC: ePIC

Barrel Imaging Calorimeter

Barrel Imaging Calorimeter

BIC Sector (total 48 sectors)

- 4(+2) layers of imaging Si sensors interleaved with 5 Pb/SciFi layers
- Followed by a bulk section of Pb/SciFi section
- Total radiation thickness ~17.1 X_0
- Sampling fraction ~10%

Barrel Imaging Calorimeter: Pb/SciFi layers

- o SciFi/Pb layers follow the GlueX Barrel Calorimeter Energy resolution: $5.2\%/\sqrt{E} \oplus 3.6\%$
- O Position resolution in z: 1.1 cm/ \sqrt{E} 2-side SiPM readout, Δt measurement
- Mature technology used in Barrel ECALs (GlueX, KLOE)
 - -Detailed studies on calorimetry performance, including the light collection uniformity in fibers, light collection efficiencies, etc.
 - -Module construction (lead handling, swaging, Pb/SciFi layers assembly, module machining) fully developed for GlueX

		ePIC	GlueX
Diameter (m)			
	Inner	1.62	1.3
	Outer	2.6	1.8
Length (m)		4.35	3.90
# Sectors		48	48
Mass/sector (T)		1.1	0.58
Weight		36 tons	23 tons

- Design hybrid vs monolithic
- 4,500 km vs 3,300 km
- Si cookies + Light guides
- Large area SiPMs

- 1) Nucl. Instrum. Meth. A, vol. 896, pp. 24–42, 2018
- 2) Nucl. Instrum. Meth. A, vol. 596, pp. 327–337, 2008

Barrel Imaging Calorimeter: Pb/SciFi layers (R&D)

- R&D goals with GlueX Baby BCal prototype
 - -Pb/SciFi tested extensively for energies $E_{\gamma} < 2.5 \text{ GeV}$
 - → higher-energy data is essential to constrain the constant term of energy resolution
 - -Obtain responses to EM showers to benchmark simulations and provide input to the realistic waveform analysis (Hall D, electrons up to 6.2 GeV)
 - -**Test with hadronic beams** in the integrated system with AstroPix sensor and thin Pb/SciFi layers to benchmark response to hadronic showers
- R&D goals with fibers

Light output and attenuation length measurements with single- and double-clad fibers from Kuraray and Luxium

Baby BCal ~15.5 X₀ Attenuation length study

Picoammeter

Photodiode

Test beam at Hall D, JLab

Barrel Imaging Calorimeter: Imaging layers

Imaging layers based on AstroPix sensors
 Developed for AMEGO-X NASA mission
 CMOS sensor based on ATLASpix3 (arXiv:2109.13409)

Key features:

Very low power dissipation ($<1 \text{ mW/cm}^2$) 500 μ m pixel size Time resolution \sim 3.25 ns

AstroPix chip R&D:

v1 (4.5 × 4.5 mm², 200 μ m pixel)

v2 (1 × 1 cm², 250 μ m pixel)

-Tested with γ , β sources, and 120 GeV proton beam

v3 (2×2 cm², 500 μ m pixel, quad chip)

- -Ongoing bench and beam test
- -Main prototyping with this chip version

v4 (1 × 1 cm², 500 μ m pixel)

-Engineering run

Quad chip v3

v3 carrier board

AMEGO-X gamma ray telescope

Barrel Imaging Calorimeter: Imaging layers (R&D)

- Tests of AstroPix v2/v3 sensor
 - -Multilayer chip tests in FNAL with protons, pions, and electrons, tests with W radiator, readout aspects (Beam tests in February and May 2023)
 - -Irradiation test in the FNAL ITA Facility

o Plan:

- -Study response to electromagnetic/hadronic shower with multilayer AstroPix v3 prototype integrated with the Pb/SciFi layers
- -Investigate the overall procedure for mass production (chip test and module assembly)

Organization

Co-DSL Hwidong Yoo

Deputy-DSL Maria Żurek

DSTC (Silicon) Jessica Metcalfe

> DSTC (Pb/ScFi) Zisis Papandreou

DSTC (Silicon) Sanghoon Lim

DSTC (Pb/ScFi) Hyon-Suk Jo

Silicon tracker for ALICE at the LHC

Dual readout calorimeter for IDEA at the FCC

Organization

Korea

Activity & plan from Korean group

Prototype Pb/SciFi production

A similar design to the GlueX prototype Under development of procedure for the prototype production Plan to perform a test beam at PS or SPS in August

Activity & plan from Korean group

Testbench with AstroPix v2 and v3
 Built a testbench and performed a basic operation with charge injection

Simulation development for TDR

Detailed geometry implementation and performance study

Material scan

Chip test machine

Based on the design files of the single-chip carrier board of AstroPix v3, a probe card design is ongoing Plan to utilize the chip test equipment for the ALICE ITS2

Sampling fraction vs. E

0.12

0.11

0.11

0.11

0.11

0.19

0.09

0.09

0.09

0.08

0.08

0.08

0.08

0.08

0.08

0.08

0.08

0.08

0.08

0.08

0.08

0.08

0.08

0.08

0.08

0.08

0.08

0.08

0.08

0.08

0.08

0.08

0.08

0.08

0.08

0.08

Sampling fraction vs. η

Summary

From the EIC Yellow Report: stringent requirements

EIC is an **electron scattering** machine and identifying scattered electrons mainly depends on the electromagnetic calorimetry.

The electromagnetic calorimeter is the main detector for **electron-pion separation**. The inclusive physics program requires up to 10⁴ pion suppression at low momenta in the barrel.

The exclusive program requires decent energy resolution (< $7\%/\sqrt{E} \oplus 1\%$) for photon energy reconstruction, and also the fine granularity for good π^0 - γ separation up to 10 GeV/c.

The bECal should be capable of measuring **low energy photons** down to 100 MeV, while having the range to measure energies well above 10 GeV

The system is space-constrained to very **limited space** inside the solenoid.

Korean institutions will make a significant contribution to the Barrel Imaging Calorimeter of the ePIC experiment at the EIC!

BACKUP

Performance: electron identification

- o Goal: Separation of electrons from the background in Deep Inelastic Scattering (DIS) processes
- \circ Method: E/p cut (Pb/SciFi) + Neural Network using 3D position and energy info from imaging layers
- \circ e/π separation exceeds 10³ in pion suppression at 95% efficiency above 1 GeV in realistic conditions!

Performance: position resolution

Example θ - φ resolution for 5 GeV photons

Position resolution for photons Particles thrown perpendicular to the calo surface

- Clusters from Imaging Si layers reconstructed with a 3D topological algorithm
- Cluster level information: $\sigma_{position}$ = (2.32 ± 0.06) mm/ \sqrt{E} \oplus (1.4 ± 0.02) mm at $\eta = 0$
- o First-layer hit information added: $\sigma_{position} = \sim 0.5$ mm (pixel size)

Performance: Neutral pion identification

- \circ **Goal:** Discriminate between π^0 decays and single γ from DVCS, neutral pion identification
- o Precise position resolution allows for excellent separation of γ/π^0 based on the 3D shower profile Reconstruction of 2 GeV π^0 invariant mass as a testing ground for cluster energy splitting
- Separation of two gammas from neutral pion well above required 10 GeV

Performance: Energy resolution (photons)

- Based on the Pb/SciFi part of the calorimeter
- \circ Resolution extracted from a Crystal Ball fit σ
- o GlueX Pb/SciFi Ecal: $5.2\%/\sqrt{E} \oplus 3.6\%$ 15.5 X_0 , extracted for integrated range over the angular distributions for π^0 and η production at GlueX (E_{γ} =0.5–2.5 GeV)

Performance: Energy resolution (electrons)

- Based on the Pb/SciFi part of the calorimeter
- \circ Resolution extracted from a Crystal Ball fit σ
- o GlueX Pb/SciFi Ecal: $5.2\%/\sqrt{E} \oplus 3.6\%$ 15.5 X_0 , extracted for integrated range over the angular distributions for π^0 and η production at GlueX (E_{γ} =0.5–2.5 GeV)

Performance: Low - energy particles

- \circ For electrons: cut out because of the 1.7 T field to reach the calorimeter ($p < \sim 408$ MeV)
- \circ For photons: the number of fired readout cells with different thresholds at $\eta=0$
- From GlueX studies: cluster/shower threshold is 100 MeV nominal (down to 50 MeV for some analyses, with mostly two cells per event only).