초전도 선재의 개발과 생산, ITER와 FCC 참여로 본 준회원국 가입의 필요성

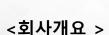
한국고에너지물리학회 2024년 봄 학술대회

2024년 5월 24일

K.A.T ㈜

목 차

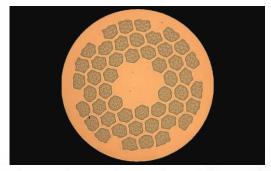
- 1 회사 소개
- 2 초전도 선재 개발과 생산
 - 1) ITER 선재 개발 및 실적
 - 2) FCC 선재 개발 및 실적
- 3 CERN 준회원국 가입의 필요성
 - 1) High Jc Nb₃Sn 선재
 - 2) 초전도 가속관


1. 회사 소개

KAT㈜는 고려제강이 100% 출자하여 2004년 설립된 **글로벌 초전도 선재 기업** 중 하나이며, 핵융합과 가속기 등에 사용되는 **고성능 Nb₃Sn 초전도 선재를 개발하여 공급**하고 있습니다.

2006년 K-STAR를 필두로 2009년 세계적인 핵융합 프로젝트인 ITER에 147톤 (1,236억원), 2019년 이탈리아 ENEA 연구소 DTT 프로젝트에 55톤(450억원)을 공급하였으며, 2023년 한국핵융합에너지 연구원 SUCCEX 프로젝트에 9.8톤(82억원)의 Nb₃Sn 선재를 수주하여 2025년내 공급 예정입니다.

2017년부터 FCC 프로젝트 참여를 위해 유럽의 **CERN과 고임계전류밀도(이하 High Jc) 초전도 선재** 개발 1차 계약 (12.5 억원)을 체결하여 2021년에 완료하였으며, 현재 후속 2차 R&D 계약을 추진 중입니다.


또한, 사업 품목 확장을 위해 2021년부터 FCC 등 글로벌 연구용 가속기 시장 진출을 목표로 **초전도** 가속관을 자체 개발 중이며, PAL, 고려대와 MOU 체결, 일본 KEK, 중국 IHEP과 긴밀히 기술교류 중 입니다.

상호	케이.에이.티.(주)	대표자	유 성 택
소재지	대전 유성구 테크노2로 223	설립일	2004년 3월 9일
매출액	('21년) 206.9 억원 ('22년) 105.7 억원 ('23년) 3.3 억원	직원수	35명 (연구인력 17명)

ITER Nb₃Sn 초전도 선재

FCC High Jc Nb₃Sn 초전도 선재

초전도 가속관

KISWIRE (고려제강)

세계적인 특수선재기업

1945년 설립된 고려제강은 자동차, 교량, 에너지, 건축, 전기·전자, 초전도 등 다양한 산업분야에 중요한 소재로 사용되는 특수선재 제품을 생산하여 세계 80여 개국에 수출하고 있는 세계적인 글로벌 기업입니다.

80	연간 총 생산량	1,2	00,000 톤 2.25 조원 ^{2023년 기준} 13%
	연간 매출액		2023년 기준
	Oo		13%
	Oo		
	Con		12%
			7%
		etc	4%
		Con	Production and Bridge by Industry Energy

KAT 연혁

초전도 응용기기 (가속관, Cryomodule)

초전도 MRI

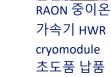
magnet R&D

시작

2010

2009

ITER에 Nb₃Sn 초전도 선재


1.5T MRI magnet 2대 납품

2015

~2018

2014

~ 2021

2018.

2017 ~ 2022

CERN R&D 1차 계약 진행 (High Jc 선재개발)

NbTi 와 MgB₂ 선재 연구개발 정부과제 R&D 완료, 상용화 추진 중

RAON 중이온 가속기

cryomodule 공동 조립

일본 이화학 연구소(RIKEN) **2022** QWR cryostat

양산품 납품

2019

2019 ~ 2022 이태리 DTT 프로젝트

Nb₃Sn 55톤 납품

방사광 가속기1.5 GHz 초전도 가속관 개발

2021~2023

2023

국내 SUCCEX 프로젝트 선재 개발 추진중

초전도 선재

KAT 설립

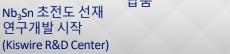
2004

1998

연구개발 시작

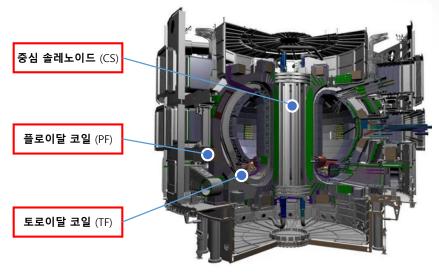
2006

K-STAR에 Nb₃Sn 초전도 선재 2톤 납품



147톤 납품

목 차

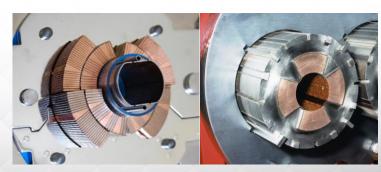

- 1 회사 소개
- 2 초전도 선재 개발과 생산
 - 1) ITER 선재 개발 및 실적
 - 2) FCC 선재 개발 및 실적
- 3 CERN 준회원국 가입의 필요성
 - 1) High Jc Nb₃Sn 선재
 - 2) 초전도 가속관

초전도 선재의 응용분야

핵융합로 적용

초전도 자석용 코일

- □ TF coil : 플라즈마를 구속하여 물리적 접촉 차단
- □ CS coil : 플라즈마 전류 생성 및 온도 제어
- □ PF coil : 플라즈마 형상 및 위치 제어



< ITER 장치의 구성 >

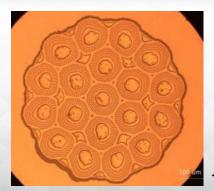
가속기

초전도 자석 종류

- □ 2극 자석 : 빔의 방향 변경
- □ 4극 자석 : 빔을 집중(focusing)
- □ 기타 다극 자석 : 빔의 안정성 향상 및 빔의 집중 개선

< 가속기용 2극 및 4극 자석, CERN LHC >

1) ITER 선재 개발 및 실적 – K-STAR 프로젝트


(1) 공급 선재 사양

선경 (㎜)	Cu/nonCu	Cr 도금 두께 (μm)	임계전류 (A@12T)	Qh (mJ/cc)	잔류저항비 (RRR)
0.78 ± 0.01	1.5 ± 0.15	1.0 ~ 1.5	≥ 145	≤ 250	≥ 100

(2) 공급 물량 및 금액

공급기간	프로젝트	Item	납품처	국가	선재량 (톤)	금액 (억원)
2006	I/CTA D	Nb₃Sn SC wire	MDCI	한국	2.0	8.6
2006	KSTAR	Cr coated wire	KBSI		11.8	4.8
합계					13.8	13.4

< K-STAR >

< K-STAR납품 Nb₃Sn 선재 >

1) ITER 선재 개발 및 실적 – ITER 프로젝트

(1) 공급 선재 사양

선경 (mm)	Cu/nonCu	Cr 도금 두께 (μm)	임계전류 (A@12T)	Qh (mJ/cc)	잔류저항비 (RRR)
R)0.82 ± 0.005	1.0 ± 0.1	1.0 ~ 2.0	≥ 250	≤ 600 (TF) ≤ 500 (CS)	≥ 100

(2) 공급 물량 및 금액

공급기간	프로젝트	납품처	국가	선재량 (톤)	금액 (억원)
2009~2013	ITER TF 도체용 Nb₃Sn 초전도 선재	KFE	한국	93.1	921
2014	ITER TF Nb ₃ Sn Conductor 760m	Toshiba	일본	4.0	33
2014~2017	ITER CS1U & CS2U Nb₃Sn Cable	e-Energy (QST)	일본	44.7	241
2018~2019	ITER TF Nb₃Sn Conductor 881m	e-Energy (QST)	일본	4.7	41
합계				146.5	1,236

- ITER 회원국 (EU, 일본, 미국, 러시아, 중국, 한국) 중 Nb₃Sn 초전도 선재 최초로 SULTAN 시험 합격
- □ ITER 회원국 중 가장 빨리 Nb₃Sn 초전도 선재 납품 완료 (93톤)
- □ 일본(QST)에 할당된 CS용 초전도 선재 국제입찰 수주 및 납품 완료 (총 49.4톤)

1) ITER 선재 개발 및 실적 – DTT(Divertor Tokamak Test Facility) 프로젝트

(1) 공급 선재 사양

선경 (mm)	Cu/nonCu	Cr 도금 두께 (μm)	임계전류 (A@12T)	Qh (mJ/cc)	잔류저항비 (RRR)
0.82 ± 0.005	1.0 ± 0.1	1.0 ~ 2.0	≥ 320	≤ 1,000	≥ 100

(2) 공급 물량 및 금액

공급기간	프로젝트	납품처	국가	선재량 (톤)	금액 (억원)
2019~2022	DTT TF 도체용 Nb3Sn 초전도 선재	ENEA	이탈리아	55.0	450

- □ ITER 선재 대비 임계전류 (Ic)가 25% 향상된 초전도 선재 개발 후 납품 완료
- □ 코로나-19 팬데믹 기간 중임에도 납기 준수 : ENEA로부터 감사패 수령
- □ 발주처에서 DTT CS 선재 입찰 참여 요청함 (선재 22톤, 2024년 하반기 입찰 예정)

1) ITER 선재 개발 및 실적 – SUCCEX(SUperConducting Conductor EXperiment facility) 프로젝트

(1) 개요

발주자	한국핵융합에너지연구원 (KFE)		
계약 금액	82억원 /부가세 별도		
계약 기간	2023년 12월 20일 ~ 2025년 12월 20일 (24개월)		

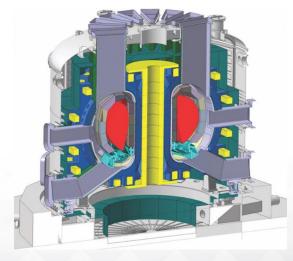
- FCC, DEMO 등에 사용될 High Jc Nb₃Sn 도체의 성능을 검증하기 위한 16 T급 초전도 도체 시험 설비
- 스위스 SPC의 SULTAN 시험 장비는 최대 12 T까지만 평가 가능

(2) 공급 선재 사양

구분	선재량	단위 길이 (m)	선경 (mm)	임계전류 (A)	잔류저항비 (RRR)	
High Jc Nb₃Sn 선재	1.7 톤	1,000	0.90 ± 0.005	≥ 288 @16T	> 100 /Q +L 7L 5\	
Nb₃Sn 선재	5.9 톤	2,000	0.82 ± 0.005	≥ 230 @12T	≥ 100 (열처리 후)	

현재 생산 중으로 2025년 12월 최종 공급 예정

2) FCC 선재 개발 및 실적 – BEST 및 CFETR 프로젝트 (진행 중)

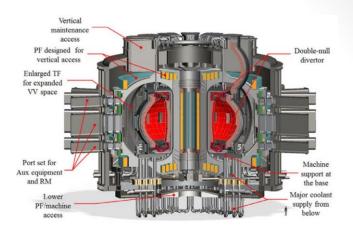

- □ BEST 및 CFETR 프로젝트 입찰 자격 획득을 위한 샘플 검증 시험 (SULTAN 시험) 진행 중
- High Jc Nb₃Sn 선재 사양: Ic ≥ 585 A @12T, 4.2K, 선경 0.82 mm

BEST (Burning plasma Experimental Superconducting Tokamak)

- CFETR 프로젝트 전 단계 R&D 용 핵융합 실험로
- 입찰 예상 시기 : 2024년 말
- 물량 및 금액 : High Jc Nb₃Sn 초전도 선재 14 톤 예상
- 발주처 : ASIPP (Chinese Academy of Science Institute of Plasma Physics)

CFETR (China Fusion Engineering Test Reactor)

- 중국에서 건설 추진 중인 핵융합 실증로
- 건설 기간: 2028 ~ 2034년 예상
- 선재 소요량 : High Jc Nb₃Sn 초전도 선재 410 톤 예상


< CFETR Design >

2) FCC 선재 개발 및 실적 – DEMO 프로젝트

K-DEMO (KFE)

- □ 구축 일정
 - 2038년 건설 착수
 - 2047년 완공 (2050년 전력 생산 예정)
- ☐ High Jc 선재 소요량 : 830 톤 예상

출처: 제2회 핵융합 실증로 전문가 포럼 회의자료 (2021년)

< K-DEMO 장치 디자인 >

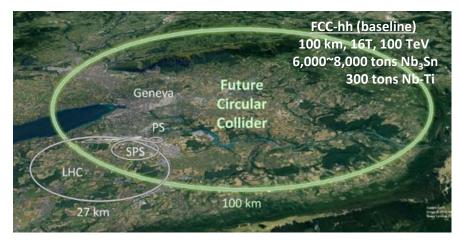
J-DEMO (QST)

- □ 구축 일정
 - 2035년 DEMO 건설 시작
 - 2050년대 운영시작 목표
- □ High Jc 선재 소요량 : 1,015 톤 예상

출처: 1) Conceptual design of Japan's fusion DEMO reactor (JA DEMO) and superconducting coil issues (2019년) 2) 일본 일간공업신문 기사 (일본 문부과학성, 2022년)

EU-DEMO (EUROfusion)

- □ 구축 일정
 - 2040년대 DEMO 건설 및 2050년대 실증 목표
 - ITER D-T 실험 일정 반영 후 2038년에 DEMO 건설 여부 최종 결정 예정
- □ High Jc 선재 소요량 : 1,000 톤 예상


출처 : European Research Roadmap to the Realisation of Fusion Energy, EUROfusion (2018년)

2) FCC 선재 개발 및 실적 – CERN FCC 프로젝트

FCC 규모 및 비용

	FCC 프로젝트 내 구성항목	금액 (MCHF)
Stage 1	Civil Engineering	5,400
	Technical Infrastructure	2,200
	FCC-ee Machine and Injector Complex	4,000
	Civil Engineering complement	600
Stage 2	Technical Infrastructure adaptation	2,800
	FCC-hh Machine and Injector complex	13,600
합 계		28,600

출처 : Future Circular Collider - European Strategy Update Documents, Benedikt, Michael (CERN) et al. (2019)

- FCC 건설비용 약 43조원, 2028년(Stage 1)부터 건설 예정
- Dipole magnet 4,700개 (9,400 MCHF, 약 14조원 예상)
- High Jc Nb₃Sn 선재 소요량 예상 : 약 6,000 톤 이상

FCC용 선재 최종 목표 사양

선경 (mm)	Cu/nonCu	단위 길이 (m)	임계전류밀도 (A/㎜²@16T)	잔류저항비 (RRR)
≤ 1.0	1.0 ± 0.1	≥ 5,000	≥ 1,200	≥ 150

■ FCC용 초전도 선재 최종 목표 사양 달성을 위해 CERN과 공동 연구 추진 중

2) FCC 선재 개발 및 실적 – CERN FCC 프로젝트

CERN-KAT 간 R&D 계약 (1차)

- □ 연구 주제 : High Jc Nb₃Sn 초전도 선재 개발
- □ 계약 기간: 2017년 3월 ~ 2022년 1월
- □ 총 과제비 : CHF 850,000 (약 12.5 억원)
- □ KAT는 1차 R&D 계약기간 중 High Jc Nb3Sn 샘플 31 km를 CERN에 공급 완료

목 차

- 1 회사 소개
- 2 초전도 선재 개발과 생산
 - 1) ITER 선재 개발 및 실적
 - 2) FCC 선재 개발 및 실적
- 3 CERN 준회원국 가입의 필요성
 - 1) High Jc Nb₃Sn 선재
 - 2) 초전도 가속관

3. 준회원국 가입의 필요성

1) High Jc Nb3Sn 선재

CERN-KAT 간 R&D 계약 (2차)

연구 주제		High Jc Nb3Sn 선재의 안정성 향상 (가제)		
과제 수행 기간		계약 시점으로부터 48개월		
과제비		협의 중 (CHF 1,000,000 이상)		
목표 특성	Jc @16T, 4.2K	Jc ~1,200 A/mm²	선경	0.7 ~ 1.0 mm

- 2023년초 CERN에서 비회원국과는 지속적인 R&D 계약이 어렵다고 하여 현재 2차 계약은 보류 중임.
- * CERN의 옵저버국인 미국과 일본의 초전도 선재 업체들(Bruker-OST/미, JASTEC/일 등)은 현재 CERN과 공동 연구 중
- * KAT는 한국핵융합에너지연구원과 CERN 간의 R&D 자금 Matching Fund를 조성하여 연구하는 방안 검토 중
- FCC 초전도 선재 공급에 참여하기 위해서는 CERN과 사전 공동 R&D 수행이 필수적임.

2) 초전도 가속관

- FCC-ee에서 사용될 초전도 가속관 수량은 1,364대가 예상되며 (FCC-hh는 미정), 가속관도 초전도 선재와 마찬가지로 CERN과 사전 공동 R&D를 통해 미래 참여에 대비할 필요가 있음.
- KAT에서는 FCC 참여 이전에 1.5 GHz Elliptical Type 가속관을 자체 개발 완료 하였고, 포항가속기연구소(PAL), 고려대(가속기과학과)와 MOU 체결, 일본 KEK 연구소 및 중국 IHEP 연구소와 기술교류를 통해 기술 역량을 확보 중

>>> Superconducting The Future

