

1

# CP violation and tqg FCNC in single top quark t-channel

Byeonghak Ko

(University of Seoul)





#### **Standard Model of Elementary Particles**

- Top quark: One of the fundamental particles in Standard Model
  - $\circ$  Discovered in 1995 (CDF, D0)
- The heaviest elementary particle in Standard Model
- Top quark physics is one of most active field in particle physics
  - Top quark properties (e.g., mass) are sensitive to high energy phenomena, such as Higgs physics and Beyond Standard Model (BSM)
  - Many studies of search for BSM relate to top quark sector



#### Single top quark t-channel process



- Single top quark t-channel process: One of process producing only one top quark
  - The others: tW, s-channel
- From the collision, one top quark and a quark is produced
  - The top quark decays immediately to bottom quark and W boson
  - The W boson decays to a pair of quark (hadronic decay) or lepton+neutrino (leptonic decay)
  - In my studies, only the case of leptonic decay is considered
    - Hadronic decay mode is hard to be extracted from backgrounds



# **CP** violation

#### About CP violation





https://www.aps.org/publications/apsnews/200112/history.cfm

- In 1956, Wu has found a parity violation in an experiment (Co-60 experiment [1])
  - Weak interaction occurs only with left-handed fermions
- In 1964, Cronin and Fitch have found a CP violation in an experiment of neutral Kaon decay [2]

### Why CP violation?





https://www.guantumdiaries.org/2011/08/28/why-b-physics/

 Since the discovery of antimatter (1932, C. D. Anderson), this question follows physicists:

Why does the observable universe have more matter than antimatter?

- Sakharov suggested Sakharov conditions to solve this puzzle, which requires significant violation of CP symmetry
- Since its discovery, but still with a too few fraction to explain the puzzle, physicists are looking for more source of CP violation

#### Introduction to CP violation in top decay



#### **Effective Lagrangian of tWb vertex:**

The tWb vertex of top decay

$$egin{aligned} \mathscr{L}_{tWb} &= -rac{g}{\sqrt{2}}ar{b}\gamma^{\mu}(V_LP_L+V_RP_R)tW^-_{\mu} \ &-rac{g}{\sqrt{2}}ar{b}rac{i\sigma^{\mu
u}q_
u}{M_W}(g_LP_L+\underline{g_RP_R})tW^-_{\mu} + ext{h.c.} \end{aligned}$$

There might be an anomalous coupling  $g_R$ , of which the complex phase makes the term **CP violating** (See <u>arXiv:1005.5382</u>)

In SM:  $g_{R} = (-7.17 - 1.23i) \times 10^{-3}$ 



The strength of CP violating term in the tWb vertex can be estimated by measuring a forward-backward asymmetry ( $A^{N}_{FR}$ )

 $A_{FB}^{N} = -0.64P \operatorname{Im}(V_{L}g_{R}^{*})$  (P : top quark polarization)(Assuming  $V_{L} = 1, P = 0.9$ )

SM expectation: 
$$A^N_{FB} = -0.708 imes 10^{-3}$$

# Measurement of $A^{N}_{FB}$ in t-channel process





(In the W rest frame)

 $\vec{p}_l$  : the momentum of the lepton (In the top quark rest frame)

 $ec{p}_W^*$  : the momentum of W boson

 $\vec{s}_t$  : top quark polarization axis (The direction of q')

$$egin{array}{rcl} ec{N} & : & ec{s}_t imes ec{p}_W^* \ ec{T} & : & ec{p}_W^* imes ec{N} \end{array}$$

(Following notation of arXiv:1005.5382)

Target variable
$$A_{FB}^N = rac{\#(\cos \theta^N > 0) - \#(\cos \theta^N < 0)}{\#(\cos \theta^N > 0) + \#(\cos \theta^N < 0)},$$
where  $\theta^N$  is the opening angle between  $\underline{\vec{N}}$  and  $\underline{\vec{p}}_l$ 

#### A result on Run I:

Search for CP violation in single top quark events in pp collisions at  $\sqrt{s} = 7$  TeV with the ATLAS detector (ATLAS-CONF-2013-032)

#### About LHC and CMS





LHC (Large Hadron Collider) 서울시립대학교

#### About LHC and CMS





- CMS is one of general-purpose detectors of LHC
- One collision per 25 ns
- Although only triggered data are taken, CMS collects 4 PB of data per year
- For this analysis 380 TB of data (1.2 x 10<sup>9</sup> events) taken in 2017 are used
  - Only single muon or single electron triggered events

#### Data and event selection

- Target: Full Run II (pp-collision, 2016-2018, 138 fb<sup>-1</sup>) in CMS
- Monte-Carlo (MC) simulations
  - o Signal
    - Single top quark t-channel process
  - Background
    - Top quark pair production, single top quark associated with W boson (tW)
    - W+jets, DY+jets
- Object selection
  - $\circ$  ~ Lepton: Muon (p\_{\_T} > 26 GeV,  $|\eta| < 2.4)$  or electron (p\_{\_T} > 29 GeV,  $|\eta| < 2.4)$
  - **Jet**: Reconstructed by anti- $k_{T}$  (cone size 0.4),  $p_{T} > 40$  GeV,
  - **b-tagged jet**: DeepJet for b-tagging (eff. > 0.5)
- Event selection for signal region
  - Exactly one muon or electron, no additional lepton with looser condition
  - 2j1b (exactly 2 jets, exactly 1 b-tagged jet and 1 non-b-tagged jet)
- All backgrounds except QCD are taken from MC simulation, while QCD background is taken from a data-driven method



#### Transverse W mass distributions





#### **Muon channel**

**Electron channel** 

## Signal extraction (MVA configuration)

서울시립대학교

#### • Used variables

- $\circ$   $\Delta R(j', b)$  (j': the associated quark)
- $\circ$   $\Delta\eta(l, b)$  (l: lepton, b: the b-quark)
- ο η(j')
- o m<sub>T</sub>(W)

#### Used method

- BDT (with adaBoost)
- Hyperparameter: Default
- $\circ$  Cut: 2 jets (one of them b-tagged),  $m_{\rm T}({\rm W}) > 50 \ {\rm GeV} \label{eq:mt}$
- Signal: t-channel process Background: All others
- No significant correlation between the BDT score and  $\cos \theta^N$
- A cut at the BDT score giving the maximal significance is applied



#### Muon channel

**Electron channel** 

# Estimation of $A^{N}_{FB}$ at parton level



- Binned likelihood fit with profiling is employed to unfold  $\cos \theta^N$  at parton level
- BDT score is used for the template variable for binned likelihood fit
- To avoid a difficulty to deal with scale uncertainties, we express positive and negative  $\cos \theta^{N}_{parton}$  yields with  $A^{N}_{FB}$  and the scale of signal and perform the fit procedure to estimate  $A^{N}_{FB}$  directly
- The fit is performed in each lepton channels and eras simultaneously
- Uncertainties are taken account by Conways method [1] with Barlow-Beeston method [2]
- Higgs combine tool is used to unfold  $\cos \theta^N$  distribution at parton level



J. S. Conway, "Incorporating Nuisance Parameters in Likelihoods for Multisource Spectra", in PHYSTAT 2011, pp. 115–120. 2011. arXiv:1103.0354.
 R. J. Barlow and C. Beeston, "Fitting using finite Monte Carlo samples", Comput. Phys. Commun. 77 (1993) 219–228, doi:10.1016/0010-4655(93)90005-W.

## Preliminary result: Pull and impact





- Asimov dataset is used
- Green: From MC stat. uncertainty
  - Mostly from lack of W+jets MC sample
- Parts of JES, JER, MET, and FSR are dominant



Previous result from ATLAS Run I (ATLAS-CONF-2013-032):  $A_{FB}^{N} = 0.031 \pm 0.065 \text{ (stat.)} ^{+0.029}_{-0.031} \text{ (syst.)}$ 





# tqg FCNC

#### FCNC





- Flavor-changing neutral current (FCNC)
  - An interaction changing the type (flavor) of an incoming particle without changing its charge (E.g., top quark → up quark,
    - top quark  $\rightarrow$  charm quark)
- Suppressed in Standard Model
  - Not allowed in tree level (i.e., the lowest perturbation order)
  - Suppressed in the next-leading order by GIM mechanism (or Glashow–lliopoulos–Maiani mechanism)

#### Introduction

- 서울시립대학교 UNIVERSITY OF SECUR
- Several beyond-Standard Models (BSM), e.g., 2HDM, MSSM, SUSY with R-parity violation, predict a significant increase of flavor-changing neutral current (FCNC) strength
- **Target**: Discrimination of tg/tq production from tqg FCNC from Standard Model (SM) backgrounds
- The predicted upper limit of  $|\kappa_{tqg}|/\Lambda$  (q = u, c) : ~10<sup>-7</sup> TeV<sup>-1</sup> (SM)  $\rightarrow$  ~10<sup>-3</sup> TeV<sup>-1</sup> (BSM)



## Signal and Backgrounds





- The presence of tqg FCNC yields tg productions, which is significantly different from SM events with top quark
  - $\circ$  tg production is ~80% (~50%) from tug (tcg) vertex
- Three signal samples of tqg FCNC processes
  - Only from tug vertex
  - Only from tcg vertex
- Main SM backgrounds
  - Single top quark t-channel process, top quark pair production, W+jets

## Machine Learning Techniques



| Boosted decision tree (BDT)                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Self-attention jet-parton assignment (SAJA) <sup>[1]</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| <ul> <li>A widely used machine learning technique in particle physics field</li> <li>Used for benchmark</li> <li>Used variables <ul> <li>Lepton kinematics &amp; PID &amp; charge</li> <li>leading light jet, leading b-tagged jet kinematics</li> <li>MET, MET φ</li> <li>Reconstructed top quark kinematics</li> <li>H<sub>T</sub>, Several angular variables between objects</li> <li>Jet shape variables of leading light jet (See the table on the right)</li> </ul> </li> </ul> | <ul> <li>Self-attention technique for assignment of physical objects in particle physics</li> <li>It takes into account the event topology and the all jet information together         <ul> <li>This property gives an advantage on the use of the jet information for jet flavor determination</li> </ul> </li> <li>Used variables         <ul> <li>Lepton kinematics &amp; PID &amp; charge, MET, MET φ</li> <li>Jets (all)</li> <li>p<sub>T</sub>, η, φ, mass b-tagging flag</li> <li># of neutral hadron # of muon # of photon major axis, minor axis p<sub>T</sub>D</li> </ul> </li> </ul> |  |

For each BDT and SAJA, two models with/without jet shape variables are trained

#### SAJA: Architecture







- Modified model from SAJA
  - Modified for single lepton channel
- Variables of physical objects are entered to encoder and concatenated to pass through a sequence of self-attention blocks
- The output is a binary classification between signal (FCNC events) and background (SM)

#### Results





- Trains with tg production samples, tug FCNC samples, and tcg FCNC samples
- ROC curves and SIC from the trainings
  - SIC: Significance Improvement Curve
     (= [efficiency of signal (ε<sub>S</sub>)] / √[efficiency of background (ε<sub>B</sub>)])
- The maximal significance of SAJA+jet shapes is significantly higher than others
  - The difference of quark jet and gluon jet is crucial

## Summary



- Studies in single top quark t-channel process
- CP violation
  - Estimation of the strength of CP-violation by A<sup>N</sup><sub>FB</sub> measurement is performed in the t-channel production of single top quarks in proton-proton collision at 13 TeV using data in full Run II (2016-2018) collected by the CMS detector
  - Expected precision has been estimated preliminarily using MC simulation
- tqg FCNC
  - Discrimination of tqg FCNC events from Standard Model (SM) backgrounds
  - The enrichment of tg production in tqg FCNC processes will be useful for this purpose
  - We have observed an improvement using SAJA with jet shape information
- Talks
  - Measurement of CP violation in single top t-channel production at 13 TeV (2023 KPS Spring Meeting)
  - Identification of tqg FCNC process using machine learning techniques
  - (2023 KPS Fall Meeting)





# Backup

#### Object and event selection



- Object selection

| Muon:          | $p_{T} > 29$ GeV (2017), $ \eta  < 2.4$ , Tight ID, rel. Iso < 0.06 |
|----------------|---------------------------------------------------------------------|
|                | 26 GeV (2016, 2018)                                                 |
| Electron:      | $p_{_{T}}$ > 29 GeV (2016), $ \eta $ < 2.4, cutBased TightWP        |
|                | 35 GeV (2017, 2018)                                                 |
| Veto muon:     | $p_{_{T}}$ > 10 GeV, $ \eta $ < 2.4, Loose ID, rel. Iso < 0.2       |
| Veto electron: | p <sub>τ</sub> > 15 GeV,  η  < 2.4, cutBased VetoWP                 |
| Jet:           | $p_{T}$ > 40 GeV, $ \eta $ < 4.7 (2.4 for b-tagged),                |
|                | Loose ID, AR(lepton, jet) > 0.4, DeepJet TightWP                    |

- Lepton selection: Exactly one "tight" lepton (muon, electron), no additional veto lepton
- Corrections: Using <u>correctionlib</u> with <u>JSON POG integration</u>
   Muon efficiency corrections for iso < 0.06 provided by Matteo (<u>#</u>)

#### **Background Estimations**



- Control regions by the number of jets and b-tagged jets
  - 2j0b: QCD control region
- QCD: ABCD method is applied to take shapes and scales
  - QCD shape is taken from sideband region
    - Sideband region is set by inverse of lepton isolation
  - The scale is estimated in 2j0b region
    - Fitting with m<sub>⊤</sub>(W) distribution
  - For muon channel, the estimation is performed in

 $|\eta_{muon}| < 1.4$  and  $|\eta_{muon}| > 1.4$ , separately

• Other backgrounds are from MC



ABCD regions for QCD estimation

## Estimation of A<sup>N</sup><sub>FB</sub> at parton level

$$L = \prod_{i}^{ ext{years, bins}} \prod_{j \in \{+,-\}} \operatorname{Poi}\left(\left(rac{s}{2}
ight)(1+A_{FB}^N)S_{ij+}(ec{ heta}) + \left(rac{s}{2}
ight)(1-A_{FB}^N)S_{ij-}(ec{ heta}) + B_{ij}(ec{ heta}) \Big| N_{ij}
ight) imes ext{(constraints)}$$

- $N_{i\pm}:~~{
  m Event}~{
  m yield}~{
  m of}~{
  m data}~{
  m in}~{
  m bin}~i~{
  m with}\pm\cos heta_{
  m reco}^N>0$
- $B_{i\pm}: \;\; ext{ Background yield in bin } i ext{ with } \pm \cos heta_{ ext{reco}}^N > 0$
- $S_{i\pm +}: \;\; {
  m Signal yield in bin} \; i \; {
  m with} \pm \cos heta_{
  m reco}^N > 0 \; {
  m and} \; \cos heta_{
  m parton}^N > 0$
- $S_{i\pm -}: \;\; {
  m Signal yield in bin} \; i \; {
  m with} \pm \cos heta^N_{
  m reco} > 0 \; {
  m and} \; \cos heta^N_{
  m parton} < 0$ 
  - $\vec{\theta}$ : Nuisance parameters

(Powered by Higgs combine tool)

- To estimated  $A^{N}_{FB}$ , binned likelihood with profiling is employed
- The parameters of yields with positive and negative  $\cos \theta^{N}_{parton}$  in the fit model are set to be  $(s/2)(1+A^{N}_{FR})$  and  $(s/2)(1-A^{N}_{FR})$ , respectively
- Letting  $A^{N}_{FB}$  be the only POI (Parameter Of Interest)
- Uncertainties are taken account by Conways method [1] with Barlow-Beeston method [2]
- The fit is performed in each lepton channels and eras simultaneously

## Unfolding setup for $\cos \theta^{N}$



(Run2018)



- Response matrices of  $\cos \theta^N$  in each lepton channels
  - The off-diagonal components are smaller than 0.2
  - No regularization is used

## Systematic uncertainties



Experimental uncertainties

- Luminosity
- Pileup
- Trigger efficiency
- Muon ID efficiency
- Muon isolation efficiency
- Electron ID efficiency
- Electron reconstruction efficiency
- b-tagging efficiency
- Jet energy resolution
- Jet energy scale
- Missing transverse energy reconstruction
- Other minor sources

Theoretical uncertainties

- Parton Shower (ISR); t-ch, ttbar
- Parton Shower (FSR); t-ch, ttbar
- Matrix element scale  $\mu_{R}$ ; t-ch, ttbar, W+jet
- Matrix element scale  $\mu_{F}$ ; t-ch, ttbar, W+jet
- Resummation (h<sub>damp</sub>); ttbar
- UE tune (t-ch, ttbar)
- top quark mass; t-ch, tt/tW (±1 GeV)
- PDF
- top quark pair  $p_T$  reweight

MC sample size uncertainties

#### **Event Selection**

- Following a CMS study of single top quark t-channel process<sup>[1]</sup>
- Lepton
  - $\circ \qquad \text{Muon: } p_{_{T}} > 30 \text{ GeV}, \ |\eta| < 2.4, \ \text{rel. iso}_{_{\Delta R < 0.4}} < 0.06$
  - $\circ$  ~ Electron:  $p_{_T}$  > 30 GeV,  $|\eta|$  < 2.4, rel. iso\_{\_{\Delta R<0.3}} < 0.06
  - $\circ$  ~ Veto muon:  $\ensuremath{p_{T}}\xspace > 15$  GeV,  $|\eta| < 2.4,$  rel. iso < 0.20
  - $\circ$  ~ Veto electron:  $p_{_T}>15$  GeV,  $|\eta|<$  2.4, rel. iso <0.20
- Jet
  - $\circ \quad \text{ anti-k}_{\text{T}} \text{ 0.4, } \text{p}_{\text{T}} > 40 \text{ GeV, } |\eta| < 2.4, \, \Delta \text{R}(\text{lepton, jet}) > 0.4$
- b-tagged jet
  - $\circ \qquad p_{_T} > 40 \; \text{GeV}, \; |\eta| < 2.4, \; \Delta R(\text{lepton}, \; \text{jet}) > 0.4$
  - b-tagging efficiency: Like CMS CSVv2 medium working point
- Only one lepton without any additional veto lepton is required
- (the number of jets)  $\ge 2$ , (the number of b-tagged jets)  $\ge 1$
- m<sub>T</sub>(W) > 50 GeV
  - In this region, we can ignore QCD background
- Two machine learning techniques, boosted decision tree (BDT) and self-attention jet-parton assignment (SAJA), are used to discriminate the FCNC events and SM events



#### Results





#### Results



