Efficiency analysis of GEM detector with boron converter

Woojong Kim

Inkyu Park, Jason Sang Hun Lee, Hyupwoo Lee, Minjae Kwon, Donghyun Song, Myeonghun Choi University of Seoul 2024 NSRI Workshop, January 9-12

Gas Electron Multiplier & n Capture Process

- GEM foil = 50 µm polyimide film
 + 5 µm copper layer on each side
- The primary electrons are generated in the drift area
- The strong electric field in micro-holes makes electron avalanches

Geant4 Simulation [Setup Variation]

Variations on active material

- Boron with natural proportion (10B:11B=1:4)
- Pure 10B (5 x cross-section of natural B)

Variations on geometry

- Boron sheet [natural proportion]
 - Boron sheet at the drift area (T=0.5 mm)
- Drift coating [Pure 10B as B4C]
 - Coated cathode plate (T=I μm)
- Foil coating [Pure 10B as B4C]
 - Both of all GEM foils and cathode plate are coated (T = I μ m)

Used physics model

• QGSP BIC HP

Geant4 Simulation [Result]

- The number of neutrons:100 million (10 meV) •
- R/O Electron = energy loss / W factor x ٠ amplification rate (18) ^ number of sheets (2)
- Efficiency difference between setups
 - Boron sheet: Backward > Forward

- Boron sheet

- Drift coating

- Foil coating

R/O Electron

Counts

×10⁶

20

0.4

0.3

0.2

0.1

Coating : Forward > Backward

×10⁶

G4 Simulated

R/O Electron

5

10

Forward

Counts

0.4

0.3

0.2

0.1

0

Beam Test

HANARO Beam Specification

- HANARO (High-flux Advanced Neutron Application ReactOr)
- Bio-REF specifications neutron energy : 10~12 meV (Cold)
- Used profile
 - 22 MW (30MW max.)
 - X-width: 4 cm, Y-width: 0.5 cm
 - Flux: 4.8 x 10⁶ Hz/cm²
 - Neutrons fluence: ~ $9.5 \times 10^6 \text{ Hz}$

Boron Coating on the Foils

Coating problem is nearly resolved.

Boron GEM Structure [boron sheet]

- The B-GEM detector consists of two GEM foils and a neutron converter
 - Drift gap: 10 mm (3 MΩ)
 - Boron sheet: 0.5 mm with (¹¹B : ¹⁰B, 4 : I)
- Better direction: **Backward**

Data Acquisition

- Read-out board
 - X-axis: 256 strips, 10 cm
 - Y-axis: 256 strips, 10 cm
- DAQ board
 - APV25_(ASIC)
 - Amp. + Shaper + ADC
 - FPGA SoC
 - Triggered Externally

DAQ board

HANARO Experiment Results

- Total running time: 43 minutes.
 - Flux: 4.8 x 10⁶ Hz/cm²
 - Total # of neutrons: ~25 x 10⁹ [est.]
- Beam profile (by slits)
 - X width = 4 cm
 - Y width = 0.5 cm
- Signal Selection
 - max(ADC) > 300
 - N_{strip} fired $\in \{1...30\}$
- Hit Position
 - C.O.M. of strips with ADC

HANARO Experiment Results

- Measurements were performed for 100 seconds at each threshold.
- Y-axis: beam on counts beam off counts

Threshold	Efficiency	Threshold	Efficiency
-30 mV	0.01798 % ⁽¹⁾	-70 mV	0.00765 %
-40 mV	0.00869 %	-80 mV	0.00742 %
-50 mV	0.00855 %	-90 mV	0.00729 %
-60 mV	0.00813 %	-100 mV	0.00714 %

⁽¹⁾ Due to beam-induced noise

Summary

A beam test with GEM detector with boron sheet_(natural proportion) is done. The beam was backward direction, selected by geant4 simulation results.

- HANARO is used for cold neutron source
- The neutron beam profile is well imaged as setup of slits
 43 minutes of exposure = # of neutrons ~25 x 10⁹
- The efficiency is measured as $8.69 \times 10^{-3} \pm 3 \times 10^{-5}_{(stat.)}$ [%]
 - with -40 mV threshold.

The B_4C Drift-coated GEM detector will be built and tested at HANARO.

Backup

Neutron cross section

Geant4 Simulation [Alpha]

- Geant4 simulation by two physics models
 - FTFP BERT HP
 - QGSP BIC HP
- Gas: Ar/CO₂ (70/30)
- Alpha energy: I.78 MeV maximum energy after capture
- Geant4 simulation result
 - Peak: 8.1 mm
 - Maximum: 9 mm

HANARO Neutron Beam Flux

30MW output

- Total entering neutrons:
 ≈ 4 cm x 0.5 cm x 6.5 x 10^6 cm^2/s
 ≈ 1.3 x 10^7 / s
- If the number of neutrons is linearly proportional to the output.
 For 22 MW output:
 ≈ 9.5 × 10^6 / s

Alpha & Li7 R/O electron

Efficiency

threshold	Beam W/O	Beam W/	Signal	Efficiency
-30 mV	165773	337183	171410	0.01798 %
-40 mV	11849	94675	82826	0.00869 %
-50 mV	1083	82639	81556	0.00855 %
-60 mV	108	77569	77461	0.00813 %
-70 mV	67	72990	72923	0.00765 %
-80 mV	37	70783	70746	0.00742 %
-90 mV	38	69573	69535	0.00729 %
-100 mV	26	68066	68040	0.00714 %

• 2023.09.08

- Humidity :59 %
- Temperature :26 °C
- Operating voltage : 4400 V
- Veto time : 2 us
 - Running time : 100 s
- Total neutrons
 ≈ 9.5 x 10^8

•