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Introduction - DESY
About FH at DESY
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Introduction - Group
FTX | Research and Technologies for Future Particle Physics Experiments

● Doing research in 5 subgroups
○ SLB: Science with Lepton Beams

■ Study on Higgs factory and LUXE

○ SFT: Software for Future experiments

■ Simulation & analysis software development

■ Machine learning

○ DTA: Detector Technologies - Calorimeters

■ SiPM based HCAL & ECAL development

○ TBT: Test Beam and Telescopes

■ Detector R&D infrastructure development

○ AST: Accelerator Science and Technology

■ FLASH, ALPS II and accelerator R&D

https://ftx.desy.de/research/slb
https://ftx.desy.de/research/sft
https://ftx.desy.de/research/dta
https://ftx.desy.de/research/tbt
https://ftx.desy.de/research/ast
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Motivation
European Strategy Update for Particle Physics, 2020

…….
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Motivation
Future Lepton Collider & HL-LHC Upgrade

Lepton Colliders (HL-) LHC (ATLAS/CMS)

Material budget < 1 % X0 10 % X0

Single-point Resolution 3 μm ~ 15 μm

Time Resolution ~ps - ns 25 ns

Granularity < 25 μm x 25 μm 50 μm x 50 μm

Radiation Tolerance < 1011 neq/cm2 0(1016 neq/cm2)

Silicon Detector Requirement
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Si Based Sensor 
Introduction

 -  +- +  +   -- +  +   - + --  + +  -

Incident particle

GND

Sig

D
ep

le
te

d 
Zo

ne

● To reduce hole-electron recombination
○ Large signal

● To collects charges faster via E-field
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● Signal is proportional to weighting field of electrode 
and trajectory of the incident particle

○ Geometry of electrodes
○ Drift trajectories
○ Avalanche multiplication

■ LGAD, ELADs etc.
● A simple example : Diode

○ Weighting field for electrode

Ramo-Shockley Theorem
Signal - Simple Example
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Data Acquisition Process
Signal Transfer and Digitizing

Deposition Signal trimming & transfer Digitizing To Readout

One of examples : MuPix10 Schematics
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Si Based Tracker
Pixel Detector

Silicon Pixel 

Hybrid Detectors Monolithic Detector

Planar Sensor LGADs

ELADs 3D Sensor

HV-CMOS Low- Capacitance

Main Goals
1. Spatial resolution
2. Time resolution
3. Low noise
4. Low material budget
5. Radiation hardness

Concentrate on 
Deposition

Concentrate on 
Devices

Monolithic LGADs
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Charge Deposition
Concerning Large Signal and Electric Field  

● Gain layer
○ High electric field causes impact ionization
○ Sub-nanosecond time resolution
○ Radiation hardness 2.5 x 1015 Neq/cm2 and 2 MGy

● Charge sharing 
○ Position resolution in thin sensor limited to 
○ Enhance charge sharing

● Short drift time 
○ Not reduce signal
○ High radiation tolerance 

LGAD

3D Sensor

ELAD
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In-Pixel Devices
Concerning Material Budget and Capacitor 

● Monolithic Active Pixel Sensor (MAPS)
○ Low capacitance : Low noise
○ Using high resistivity material for depleted zone
○ Standard CMOS imaging process
○ Possible small pitches

● High Voltage MAPS (HVMAPS)
○ High voltage extends depleted zone and increase drift
○ Nanosecond time resolution
○ Standard HV-CMOS imagine process

● Low material budget
○ Thin to 50 μm or much thinner
○ Small Multiple scattering
○ Possible to bend sensor

MuPix 10

ATLASPix3 /MightyPix/TelePix HitPix

ALPIDE ITS 3
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Introduction - Test Beam
Why a Test Beam?

● What is test beam campaign?
○ To verify the performance of sensors or devices using high 

energetic particle beam
○ Tracking using beam telescope

■ Enable to distinguish particle and noise

● In all above steps tests and evaluations 
are necessary of:

○ Performance: efficiency, noise, rate capability, stability …

○ Resolution: position, energy, time, …

● Energy has to be in the GeV range

● Sources: not enough energy

● Comics: too low rate per area (1/cm2/min)

Sources Particles from collisions



● Beam telescope
○ Consist of 3 or more reference layers, Device Under Test 

(DUT) layer and time reference layers optionally 
○ Tracks are reconstructed only using reference layers

● Track efficiency
○ Linear fit using hits in reference layers
○ Reconstructed tracks are compared to hits in DUT layer

■ If matched : count as matched hit
■ If not matched : count as noise

○ Definition of efficiency 

○ Noise
■ Electric noise, scattering and inefficiency of 

telescope etc.
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Introduction - Test Beam
Telescope - Efficiency measurement
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Characterizing 
Spatial and Time Resolution

● Devices performance test
○ Amplifier, comparator, signal trimming etc.
○ It affects track efficiency, time resolution 

● Time resolution is measured using Time reference layer
○ It contains a lot of parameters 

● Charge sharing improves spatial resolution
● Required in-pixel efficiency measurement

○ It depends on geometry, electric field

MuPix10

Charge sharing

In-Pixel Track
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 Testbeam

 DESY 

 LINAC

 L-Weg 

 R-Weg 

● Testbeam facility parasitically uses beam for PETRA III
○ LINAC filles bunches to pre-accelerator DESY II 
○ 1 MHz circulation frequency

● Target based beam generation at DESY II
○ Fiber target in the ring generates Bremsstrahlung photons
○ Gamma is converted to electron-positron pair  
○ Dipole magnet selects beam type & energy

● Single electron energy up to 6 GeV selectable
○ Beam rate depends on beam energy
○ Limits rate to a few 10 kHz

Facility
Overview and Beam Generation
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● A lot of tracks for precise measurement
○ In-pixel spatial resolution & pixel timing, material budget etc.

● To verify readout performances of sensors with high rate beam 
○ A lot of experiments plant to use high rate beam
○ E.g. beam monitor, beam counter

● To irradiate sensors
○ LumiCal for ILC experiment

■ Precise measurement of the ILC’s luminosity via Bhabha 
scattering

■ High energetic incident electrons penetrate into Si/W sensors
■ High statistics at low angle => NBha ~ 1/θ3

○ HL-LHC upgrade
■ e.g) ATLAS : Max. fluence of Layer 1 will be 1.4 x 1016 neq/cm2

■ 99% of all hits at a bunch spacing of 25 ns requires a time 
resolution about 5 ns during experiment

○ General question 
■ Different damages from the different type of particles

Motivation of High Rate Beam 
More Powerful Beam & Irradiation
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● Bulk damage
○ Non Ionizing Energy Loss (NIEL) or Total Ionizing Dose (TID)
○ Hadrons, higher energetic Leptons and gammas
○ Displacement in a pair of  a Si interstitial
○ A vacancy in Si-lattice

● Bulk damage impact on detector
○ Determined by Shockley-Read-Hall statistics

Irradiation Study
Bulk Damage

Cluster defect Single defects

conduction band

valence band

band gap
Acceptor

Donor

Trapping 
■ Deep defects
■ Signal drop

Generation & Recombination
■ Current increase
■ Cooling helps to reduce

Donor & acceptor generation
■ Charged defects 
■ Change of E-field 
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● Increase leakage current
● Conversion of effective Doping concentration

○ Depends on  radiation particle 
○ Depends on doping type and material

● Drift velocity in charge collecting diode is changed
● What happens in case of electron beam?

 

Irradiation Study
Effects
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● There were few prior irradiation studies of Si-based sensor with rel. 
low energetic electron beam

○ There is no significant difference between oxygen riched and standard Si sensors 
○ Cluster defects are increased by higher energetic electrons

● A irradiation campaign at SLAC for development of BeamCal
○ Si diode and SiC sensors are tested 

■ 90Sr source are used to measure the amplitude of deposited charges
○ Irradiation damages were observed

■ Amplitude of signal decreased after irradiation
■ Leakage current increases

○ But, there are any details

900 MeV 
electrons

[S. Dittongo et al, NIM A 546(2005) 300]
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Irradiation Study
Electron

77 Mrad
270 Mrad

13.3 GeV 13.3 GeV
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Irradiation Facilities

● Neutron Irradiation facility in Ljubljana
○ Neutrons are generated by a reactor
○ ~ 1015 neq/cm2 in 1 h 30 min.
○ Only Non-Ionizing Energy Loss (NIEL)

● Proton irradiation facilities using synchrotron
○ 24 GeV Proton beam at IRRAD, CERN

■ ~ 5 x 1011 p/spill (~400 ms)
○ 23 MeV Proton beam at KIT

■ ~ 5 x 1015 neq/cm2 in 1h 30 min.
○ NIEL and Ionizing Energy Loss (IEL)

● Photon source or low energetic electron only for IEL
○ Photon with energy smaller than 300 keV
○ Electron with energy smaller than 255 keV 

Neutron spectrum in Ljubljana

Thermal 
58%

Epithermal
25%

Fast
17%

Beam profile at IRRAD Beam profile at KIT
position [cm]

in
te

ns
ity

 

Neutron and Proton 



22

Beam Dump

To PETRA

Radiation monitor

Dipole 
Magnet

Quadrupole 
Magnets

Beam

● New facility, PRIMary-beam test Area(PRIMA), for irradiation using 
electron beam

○ Beam is filled into PETRA
○ If not, beam is dumped in DESY II

■ Dumped beam could be upcycled 
● Important instrument in PRIMA facility

○ Dipole magnet extracts beam from DESY II into PRIMA
○ Quadrupole Magnets(QMs) to focus or defocus on beam
○ Toroid measures the number of beam through the beam pipe
○ Beam dump and Labyrinth
○ Radiation monitors : at beam dump and next to beam pipe
○ Heater to remove humidity

TESTBEAM   FACILITY

PRIMADESY II

22

Flange

Irradiation Facility
PRIMary-beam test Area : PRIMA
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Required Study
For User

● Radiation background
○ For safety 

■ Number of Neutron and Photon after extraction
○ Estimation of number of beam at the dump as beam counter
○ To reduce radiation damage to devices except the sensor

● Beam stability
○ Fluctuation of mains Frequency changes beam parameters
○ Beam size, position and divergence
○ Quadrupole magnets have to be optimized

● Beam counter
○ Using Toroid Dump

table
Stable 
beam

Beam 
counter

se
ns

or

Radiation 
background

Irradiation
calculation
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Beam Operation in PRIMA
Beam Profile

● Beam
○ Number of electrons in bunch depends on the injection

■ Up to 3x1010  e / bunch
■ Possible < 1x105  e / bunch
■ Bunch length smaller than 100 ps
■ Repeated frequency of 6.25 Hz

● It can be upgrade to 12.5 Hz
■ Beam energy oscillates like sin(x) between 450 MeV to 6.3 GeV

○ Beam size is expected smaller than 1 cm x 1 cm in DESY II ring

Extraction in 
1st cycle

Extraction in 
2nd cycle

6.3 GeV

450 MeV

Current beam with energy of 500 MeV 
measured with beam camera
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● Radiation background
○ Neutron and photon are generated

■ Resonance of photonuclear reaction
○ Mostly from beam dump
○ Large size of beam and unstable beam generate 

background too 
○ Not only safety, but also to shield devices to 

neutrons
○ Beam stability can be estimated

■ Dose is proportional to # electrons
● PANDORA

○ Scintillator
■ Gamma > 50 keV
■ High energetic neutron > 20 MeV

○ Moderated 3He tube
■ Low energetic neutron < 20 MeV
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PANDORA Measurement

Nuclear Science Symposium Conference Record, 2007. 
Volume: 3, Pages: 1982 - 1983

Scintillator

3He Tube
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Measurement
PANDORA - Radiation Monitor
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Simulation and Model
FLUKA

● FLUKA is MC framework for the interaction and transport of particles in materials
○ It is based on punching card system and Fortran
○ Eq-Dose of generated Photon and Neutron can be calculated
○ Movement of Particles passing through magnets is observable 

● Extraction Magnets, Beam line and facility are integrated into the FLUKA geometry
● Beam Extraction model

○ Δtext is proportional to error of mains frequency
○ Current of dipole magnet depending only on beam energy is constant

■ Extracting angle depends on the beam energy due to Lorentz force

\

Beam with energy E+ΔE

Dipole Magnet Quadrupole magnets

PANDORAs Beam dump
Beam pipe
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● Detectability of Photon is saturated
○ Too high rate

● For safety
○ Beam-time : Not allow to enter into the area
○ After beam time

■ Electron and Neutron disappear immediately
■ Activated  material emits gamma

○ User should take a dosimeter

Radiation Background
Simulation and Measurement

Response delay of 
radiation monitor

Beam off

Neutron

Photon
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● Detectability of Photon is saturated
○ Too high rate

● For safety
○ Beam-time : Not allow to enter into the area
○ After beam time

■ Electron and Neutron disappear immediately
■ Activated  material emits gamma

○ User should take a dosimeter
● To reduce neutron damage in DUT

○ Labyrinth is installed between beam pipe and dump
● To reduce damage in devices

○ Safety zone is found using simulation

Radiation Background
Simulation and Measurement

Beam loss of 10% at 
the flange

500 MeV Beam

Without beam loss
6 GeV Beam

6.25 Hz, 2x109e / 
bunch

6.25 Hz, 7x109e / 
bunch

Simulated
Dose

[μSv/h]

Photon 7935± 15 13930 ± 105

Neutron 1000 ± 40 21315 ± 735

Measured
Dose

[μSv/h]

Photon ~160 ~900

Neutron ~1000 ~22000

Neutron

beam
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Flange

● Mains frequency synchronizes all magnet system at DESY II
○ Its fluctuation correlates beam stability
○ Uncertainty of extracting time ~ extracting angle

■ It causes change of beam position and beam size
■ Increases unexpected hit to materials at beam pipe
■ Radiation background is changed

Beam Stability
Beam Position and Size
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500 MeV measured with 

beam camera
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● Mains frequency synchronizes all magnet system at DESY II
○ Its fluctuation correlates beam stability
○ Uncertainty of extracting time ~ extracting angle

■ It causes change of beam position and beam size
■ Increases unexpected hit to materials at beam pipe
■ Radiation background is changed

● Quadrupole magnets would make beam stable
○ Beam position offset depends on extracting energy

■ 6 GeV is stable
○ A example :  500 MeV

■ QM1 could correct the beam position
■ It can be checked by PANDORA  and measurement

Beam Stability
Beam Position and Size

Detecting 
points for 

kicker

10 cm 

Beam
S = 3.19 m

4 m

Kicker Magnet

~ 22o

QM1 QM2

measured point 18 m

30
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Beam Stability
Beam Position and Size

          # Particle at DESY II
        # Particle via Toroid 

# 
P
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le
 [1

09 ]

6 GeV
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● Si sensor R&D as tracker for Future experiments
○ For Timing, spatial resolution : 4D Tracker
○ Low material budget
○ Electronics and Readout

● Test beam is an important campaign for sensor R&D
○ DESY is one of big facilities
○ New test beam facility will be open for users

■ High rate beam
■ Irradiation

○ New facility could provide other particles to users

Summary
FuTure Experiment 
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Vielen Dank für 
Ihre Aufmerksamkeit
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Back up
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High Voltage Monolithic Active Pixel Sensor 
Introduction
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Noise
Capacitance
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High Voltage Monolithic Active Pixel Sensor 
One of Examples : MuPix 10

● MuPix10 is a full size HV-MAPS prototype
○ Detection and signal processing with just 50μm silicon
○ 180nm HV-CMOS process
○ 2cm x 2cm with 256 x 250 pixels
○ Pixel size of 80 x 80μm2

○ ToA + ToT have 11 + 5 bits
○ LVDS links of 3+1
○ Resistivity of 200Ωcm

● It is developed for Mu3e experiment at PSI
○ Low material budget
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Mu3e Experiment
Introduction

● Search for μ decay into  eee
○ Standard model : BR < 10-54

● Current limit
○ BR < 10-12 from SINDRUM, 1988

● Aimed measurements
○ Phase I < 2 x 10-15

○ Phase II < 10-16

● Requirement and Challenges
○ High rates 
○ Good timing ~100ps
○ Good vertex resolution 100μm
○ Good momentum resolution ~0.5 MeV

          => Low material budget 10-3 X0

109 μ/s



Estimation of Surface Damage

● Measuring Flatband voltage
○ VFB can be measured using C-V measurement

● Measuring leakage current
● However, it is not simple to measure surface damage in case of 

charged particles
○ Bulk damage changes VFB and leakage current too

● E.g. Monolithic sensors are difficult to be studied too
○ A lot of surfaces made by N-/P-wall to shield devices

39[R. Wunstorf et al. / Nucl. Instr. and Meth. in Phys. Res. A 377 (1996) 290-297]

20 keV electrons



Single Upset Event

● Measuring Flatband voltage
○ VFB can be measured using C-V measurement

● Measuring leakage current
● However, it is not simple to measure surface damage in case of 

charged particles
○ Bulk damage changes VFB and leakage current too

● E.g. Monolithic sensors are difficult to be studied too
○ A lot of surfaces made by N-/P-wall to shield devices
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Motivation

● Beam monitoring system at Heidelberg Ion-beam 
Therapy Center (HIT)

○ Current beam monitor made of gas and multi wire 
proportional chambers (MWPCs) 

■ It cannot provide information on 2D beam 
shape 

■ The resolution is limited by the wire distance 
typically  in the order of 0.5 - 1.0 mm

■ The Strong magnetic field of an MRI might 
influence the movement of the ionized gas 

○ Plan to implemented MRI-guided ion-beam 
delivery

○ Precise measurement of Position, spot size and 
dose delivery 

41



HitPix

wrong (20 GHz on 0.5cm2)

~ 1.3 x 1015 neq/cm2

prototype with 24 x 24 pixel matrix

on-chip 

a 180 nm HV-CMOS technology

 possible down to 50 μm

42



Pixel
● A depletion region of 30-50 μm depth
● Radiation tolerance

○ Fast charge collection and separation improve 
tolerance to radiation- induced bulk damage

○ For the tolerance to surface damage 
■ The radiation-tolerant PMOS circuits
■ All linear NMOS transistors are replaced 

by enclosed transistors
● Consist of two flavors of HitPix

○ HitPixS
■ Three separated wells in every pixel
■ To assure that the signal charge flows into 

the CSA
■ Reduce leakage currents

○ HitPixISO
■ The deep n-well used as sensor electrode
■ The isolation to avoid shorting and to 

prevent capacitive crosstalk of digital 
signal

● Substrate resistivity : 300 Ωcm   

HitPixS

HitPixISO
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Analog Pixel Electronics
● Charge Sensitive Amplifier (CSA)

○ A folded cascode amplifier with PMOS
○ The charge-to-voltage conversion gain is 
○ Csens capacitance of the sensor diode from 

simulation
■ HitPixS : 52 fF
■ HitPixISO : 946 fF

○ A small loop gain reduction arises due to the 
voltage division at Cc and the gate-source Tin

● Comparator
○ A standard differential amplifier
○ The threshold (TH) setting is global
○ TH tuning is unnecessary due to the large signal

■ But, plan to implement in the next version 
■ The different aging speeds of pixels due to 

inhomogeneous irradiation
● Power consumption

○ CSA : 4.7 μA 
○ Comparator : 10 μA

Feedback loop

44



Digital Pixel Electronics
● The block scheme of the digital part in each pixel
● 8-bit ripple counter is implemented
● Full readout

○ Before reading out the counter states, the bits are 
stored into D-latches by activation of ld

○ The counters of all pixels in row i are read out by 
setting the 5-bit signal rowaddr to i

○ The output of the latches qs is connected to the 8-bit 
bus

○ The row address and counter states are stored in the 
same register

● Faster readout
○ An asynchronous 13-bit adder is implemented in 

every pixel
○ The sum of counter states is obtained from the 

adders in one column
○ In just one readout cycle, the column projection can 

be read out

counter
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Feedback Circuit
● To avoid analog pile-up, the feedback circuit should 

discharged the capacitances fast enough
● And it should generate as little noise as possible so that 

smaller signals can be detected
● The discharge current increases with longer pulse duration

○ The dead time does not increase linearly with signal 
amplitude

● Simulation result for HitPixS in case of 60 MeV protons
○ About 1 MHz counting is possible (dashed line in 

Fig.14)
○ For stronger feedback current faster rest times can 

be achieved
● Simulated equivalent noise charge (ENC) with 0.5 nA 

feedback without leakage current
○ 136 e- for HitPixS
○ 433 e- for HitPixIso
○ Leakage current by irradiation damage dominates

3 x 27800 e-
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Testbeam Measurement
● Two hitmaps

○ ⅔ of the beam particles have to pass the sensor
○ For low intensities, the counting rate matches the 

expectation
○ For high intensities, dependence becomes 

sublinear
■ Due to pile-up of signals at CSA output
■ It could be enhanced, e.q. increasing the 

feedback current If
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Simulated Beam Line
2 μSv/h 0.2 μSv/h

Lead

Flange

Toroid

Beam
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Flange

Beam dump
Beam

Le
ad

Flange 
connects beam pipes

Radiation



Beam Size for Δf = 0.05 Hz after Kicker Magnet

1st cycle 500 MeV for  Δf = 0.05 Hz

z = 10cm
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Front of the first quadrupole 
magnet

x-axis

x-axis

1st cycle 6 GeV for  Δf = 0.05 Hz

Current beam with energy 
of 500 MeV measured with 

beam camera



Beam Stability for 500 MeV
Current beam with energy of 500 MeV 

measured with beam camera
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500 MeV Beam        
# Particle at DESY II

        # Particle via Toroid 

1e-2

1e-1

1e-2

1e-
1

5e-2 5e-2

num. : Value of QM1

Field of  Magnets = 
Max. Field * Value of QM

Current value



Beam Rate Measurement for 6 GeV 
Without Quadrupole Magnets

51

# 
P

ar
tic

le
 [1

09 ]

# Particle at DESY II
        # Particle via Toroid 

The gap is caused 
by the dipole 
magnet

Dipole magnet Centre

Ideal beam
Real beam < 1 mrad

Beam

QMs can realign the beam
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6 GeV Beam        
# Particle at DESY II

        # Particle via Toroid 

Beam Stability for 6 GeV

Default current

QMs off

DM = -1308.7 A
QM1 = -120 A
QM2 = 300 A

● 6 GeV beam
○ Independent of 
○ Magnet field scanning for dipole 

magnet to minimize position 
offset

○ QMs can realign the beam

DM_offset = - 0.1 %
QM1 ~ -120 A
QM2 ~ 300 A

After the dipole Before QM1

After QM1 After QM2

Beam position = [ 0.1 cm , 0 cm]
Beam size = [ 1.4 cm , 3 cm]
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