중성자 검출기 개발과 응용

문명국

한국원자력연구원

moonmk@kaeri.re.kr

1

◇ 원자력 & 방사선기술 연구개발을 위해 1959년 설립
◇ 대전 본원, 정읍 (ARTI), 경주 (KOMAC), 감포, 기장(추진중)
◇ 총원 1,717명 (연구기술직 1,281명)

www.kaeri.re.kr

010-3457-3302 moonmk@kaeri.re.kr

- 방사선 기술 개발 관련 과제 수행
- 가속기 기반 중성자원 개발
- 중성자 영상시스템 개발
- X-선, 감마선, 하전입자 (알파, 양성자) 검출 기술 개발
- 중성자 검출 기술 개발
- 중성자 산란 & 회절 장치 개발
- 방사선 검출 시스템 연구 개발
- 한국원자력연구원 책임연구원

강사 소개

원자 수준의 미세 구조 분석 연구 장치 개발 & 성능향상

• 연구용 원자로 하나로(HANARO)

하나로 연구용원자로

2018 status total 19 instruments

- **02** Ex-core Neutron irradiation Facility
- **09 Thermal Neutron Prompt Gamma Activation Analysis**
- **01** Residual Stress Instrument
- **08 High Resolution Powder Diffractometer**
- **07 Four Circle neutron Diffractometer**
- **06 Bio-Diffractometer**
- 05 Bio-diffractometer with neutron image plate Camera
- 04 Thermal neutron Triple-Axis Spectrometer
- **03** Neutron Radiography Facility

- **10 Guide Test Station**
- **11 Vertical type REFlectometer**
- **12 Cold Neutron Activation Station**
- **13** High Intensity Powder Diffractometer
- 14 40m Small Angle Neutron Scattering instrument
- **15** Disk-Chopper Time-of-Flight spectrometer
- **18 KIST Ultra-Small Angle Neutron Scattering instrument**
- **17 Bio-REFlectometer**
- 16 18m Small Angle Neutron Scattering instrument
- **19 Cold neutron Triple-Axis Spectrometer**

대부분 응집물질, 표면 구조 연구에 활용

하나로 원자로홀

하나로 연구용원자로

하나로 연구용원자로

냉중성자실험동

• 방사선 검출 시스템 개발

방사성물질/핵물질 탐지 기술 개발

중심어

물리학 배경지식 활용 연구원에서 실제 수행하고 있는 업무 내용 소개

강의 내용

검출 기술 흐름도

공통 : ²³⁵U 핵분열 반응 이용

항목	연구용	발전용	
사용 핵연료(²³⁵ U)	20 % 이하	대부분 5 % 이하	
열출력	대부분 30 MW 이하 (전기 출력 x)	3,000 ~ 4,000 MW (전기 출력 : 1 ~ 1.4 GW)	
가동 형식	개방형 수조	압력용기	
주요 활용 분야	 중성자 이용 동위원소 생산 핵연료, 원자력 재료 연구 중성자 핵변환 방사화 분석 중성자 기초과학 연구 	열에너지 → 전력 생산	

 $^{a}X + ^{1}n \rightarrow ^{a+1}X \rightarrow$ radiation decay (주로 β, γ)

핵분열 반응

 $_{92}U^{235} + n \rightarrow X + Y + 2^{\sim}3n + 200 \text{ MeV}$

Fission Energy

- = 200 MeV/fission
- = 2x10⁸ eV/fission
- = 2x10⁸ x 1.6x10⁻¹⁹ J/fission
- = 3.2x10⁻¹¹ J/fission

 $30 \text{ MW} = 3 \times 10^7 \text{ W} = 3 \times 10^7 \text{ J/s}$

 $\sim 10^{18}$ fission/s

원자력발전소는 ~10²⁰ fission/s U²³⁵ 사용 3.14 kg/day → 1 ton/y 석탄의 경우 10,000 ton/day

공통 : ²³⁵U 핵분열 반응 이용

항목	연구용	발전용	
사용 핵연료(²³⁵ U)	20% 이하	대부분 5 % 이하	
열출력	대부분 30 MW 이하	3,000 ~ 4,000 MW	
중성자 선속(n/cm²s)	~ 10 ¹⁴	~ 10 ¹²	
	발전용 원자로 대비 100배 이상 중성자 선속		
특징	원자력 소부장 aging test (acceleration test)		

📫 핵연료 (재)활용, 폐기물 저감/처분 기술 개발 진행

- 그 외 폐기물 처리
- → 장반감기 원소 → 핵연료 분리 정제 → 재활용 기술
- ²³⁸U이 중성자를 흡수하여 Pu 등으로 변환

• 핵연료 중성자 방사화

- → 방사능 : 300년에 1/1,000, 600년에 1/1,000,000, ...
- ¹³⁷Cs, ⁹⁰Sr 등은 반감기가 30년
- 핵분열 부산물 처리

원자력발전 주요 이슈

중성자 특성

중성자는 원자핵에 구속

원자핵 내에서 강한 상호작용력으로 구속

radiation-dosimetry.org

원자번호가 같더라도 중성자 수가 다른 동위원소가 다수 존재

20

중성자의 특성

- Electric charge : 0
 → 원자핵 접근이 용이 → 핵반응
- Magnetic moment : Yes
 → 자성물질 연구에 용이
- Spin : ½ → 물성 연구에 활용
- Mean lifetime : 879.4 s
- Neutron energy : <meV ~ >GeV
 → 에너지에 따라 다양한 상호작용

중성자 운동에너지 E _n = kT
k : Boltzmann constant
T : temperature(kelvin)

핵연료, 원자력 재료 연구

중성자 기초과학 연구

중성자 이용

동위원소 생산

중성자 핵변환

방사화 분석

상온(300K) : 0.025 eV

Name	Cold	Thermal	Epithermal	Cadmium	Slow & intermediate	Fast
Energy(eV)	<0.025	0.025	0.025~0.4	0.4~0.5	1~ 1,000,000	>1,000,000

중성자의 특성

• Neutron wavelength → 원자/분자 미세 구조 연구에 활용

고체물리학, 현대물리학

중성자 활용 @하나로

• 중성자 분석장치

- 저에너지 중성자를 활용한 원자/분자 수준의 미세구조 연구 분석용 검출기
- 중성자 투과 영상, CT 영상 획득용 검출기

중성자 발생

- 중성자는 어떻게 측정하는가? → 중성자 상호작용 이해 → 중성자 검출
- ²³⁵U에는 반응하고 ²³⁸U에는 왜 반응하지 않는가? → 중성자 상호작용 이해
- 핵분열 반응을 일으키는 초기 중성자는 어떻게 발생시키나?
- Image: state state

방사성 붕괴

- 불안정한 원소 → 안정 원소
 - 원자핵에서 알파선, 베타선, 감마선 방출

- 원자핵에서 방출되는 방사선
 - 알파선 : 헬륨 원자핵
 - 베타선 : 전자(양전자)
 - 감마선 : 전자기파
- 에너지 범위
 - 알파선 : 5 ~ 10 MeV
 - 베타 : 0.02 ~ 3 MeV
 - 감마선 : 0.05 ~ 3 MeV
- 반감기
 - ²³⁸U : 4.468 x 10⁹ y
 - ²³⁵U : 7.04 x 10⁸ y

중성자 발생 실험

α⁴ + Be¹ → C¹² + n +5.7 MeV (중성자 방출 확률 < ~0.01%)

현대물리학, 핵물리학 Wikipedia "Discovery of the neutron"

Nuclear Binding Energy

- 원자핵의 질량 < 양성자+중성자 질량 합 (nuclear binding energy)
- 중성자 방출을 위해서는 에너지 필요 → 핵반응 에너지

중성자 발생 반응

- 동위원소 이용 핵반응 (주로 알파선+Be)
- 자발 핵분열 반응 (원자번호가 아주 높은 원소)
- 가속 입자 반응 (양성자, 전자, 중입자,)
- 핵분열 반응
- 핵융합 반응
- 기타

중성자 발생 반응

- Alpha-induced reactions (RaBe, PoBe, AmBe, ...)
 - ${}^{9}Be(\alpha, n) {}^{12}C + 5.7 \text{ MeV}$ (Neutron yield : 15 x 10⁶ n/s/Ci)
- Spontaneous fission (²⁵²Cf)
 - ²⁵²Cf(sf) ¹³⁴Te + ¹¹⁵Pd + 3n + 212 MeV

Neutron yield : $4.4 \times 10^9 \text{ n/s/Ci} (2.4 \times 10^{12} \text{ n/s/g})$

- Neutron-induced fission (HANARO, Power reactors)
 - ²³⁵U(n,f) ¹³⁴Te + ⁹⁹Zr + 3n + 185 MeV
- Fusion reactions (neutron generators, KSTAR, ITER)
 - d(d,n)³He + 3.3 MeV, t(d,n)⁴He + 17.6 MeV

동위원소 이용 중성자 발생

- 자발 핵분열 (Spontaneous fission)
 - 우라늄보다 무거운 원소에서 발생
 - 원자로에서 우라늄이 중성자 방사화되면서 생성

₉₂U²³⁸ + 14 x n → ₉₈Cf²⁵² 가격 : > 25 M\$/g (가장 비싼 원소)

원자로 점화용 중성자원 : 252Cf, AmBe, RaBe 등

가속기 이용 중성자 발생

- Proton neutron(p, n) 반응
 - 선형가속기 또는 원형가속기(eg. cyclotron) 이용
 - 원자번호가 낮은 원소 (주로 Be 사용)

Neutron production yield

JANIS Book of proton-induced cross-sections Scientific diagram

중성자 발생원

- 양성자 가속기 기반 중성자원
 - 표적 열 해석, 저방사화 재료 선정이 중요
 - 방사선 차폐 기술 개발

Reaction	Melting point	Thermal Conductivity	Radioactive products	Gamma to neutron ratio
⁷ Li(p,n) ⁷ Be [E _{Thr} :1.9 MeV]	181 °C	71 W/(mK)	⁷ Be [E _{Thr} :1.9 MeV]	0.4 @E _p 7MeV
⁹ Be(p,n) ⁹ B [E _{Thr} :2.1 MeV]	1287 °C	210 W/(mK)	⁷ Be [E _{Thr} :13.4 MeV]	0.25 @E _p 7MeV

원자력연구개발사업 지원으로 가속기 기반 중성자원 개발 진행중 (up to 2023)

중성자 상호작용

투과 영상 (X-선 vs. 중성자)

X-선

중성자

x-선과 중성자 투과 영상이 다른 이유?

투과 영상 (X-선 vs. 중성자)

x-선과 중성자 투과 영상이 다른 이유?

X-선

중성자
투과 영상 (X-선 vs. 중성자)

X-선

중성자

x-선과 중성자 투과 영상이 다른 이유?

투과 영상 (X-선 vs. 중성자)

x-선과 중성자 투과 영상이 다른 이유?

물질과 상호작용 원리 이해 필요

- 금속은 쉽게 투과
- 플라스틱 성분은 투과하기 어려움
- 중성자
- 플라스틱 성분은 쉽게 투과

- 금속은 투과하기 어려움

- x-선
- X-선 vs. 중성자 투과영상

원자 크기 vs. 원자핵 크기

- 원자핵 내의 중성자 수가 중요
- · 원자핵과 상호작용
- 중성자
- 원자번호(전자 수)가 중요
- 원자(주로 전자)와 상호작용
- X-선

상호작용 현상 (원자 수준)

X-선 상호작용

- 광전효과 (Photoelectric effect)
 - 내각 전자와 주로 반응
- 컴프턴 산란 (Compton scattering)
 - 외각 전자와 주로 반응
- 전자 쌍생성 (Pair production)
 - 전자 정지질량 2배 이상의 에너지 필요 (>1.02 MeV)
- 기타 반응

X-선과 물질과의 상호작용

A. TRANSMITTED UNAFFECTED No interaction

B. PHOTOELECTRIC ABSORPTION

Collision with a tightly bound inner-shell electron

C. RAYLEIGH SCATTERING

Elastic collision with a bound outer-shell electron

D. COMPTON SCATTERING

Inelastic collision with weakly bound outer-shell electron

x-선 에너지가 전자 정지질량 에너지의 2배(>1.02 MeV)가 넘는 경우에는 전자-양전자 쌍생성(pair production) 현상 발생

현대물리학, 핵물리학 Internet search image

X-선 상호작용 확률 (Cross Section)

Fig. 3-1. Total photon cross section σ_{tot} in carbon, as a function of energy, showing the contributions of different processes: τ , atomic photo-effect (electron ejection, photon absorption); σ_{coh} , coherent scattering (Rayleigh scattering—atom neither ionized nor excited); σ_{incoh} , incoherent scattering (Compton scattering off an electron); κ_n , pair production, nuclear field; κ_e , pair production, electron field; σ_{ph} , photonuclear absorption (nuclear absorption, usually followed by emission of a neutron or other particle). (From Ref. 3; figure courtesy of J. H. Hubbell.)

Fig. 3-2. Total photon cross section σ_{tot} in lead, as a function of energy. See Fig. 3-1. (From Ref. 3; figure courtesy of J. H. Hubbell.)

43

투과율

X-선과 물질과의 상호작용 확률

원자번호가 높을수록 상호작용 확률이 높음 (eg. 혈관조영제 등)

중성자 상호작용

핵물리학 Scientific diagram

X-선과 중성자의 상호작용 확률

중성자가 보는 원소

Thermal Neutron Cross Section of the Elements

Table of Nuclides

U-235 Find 92-U-235 💿 **Nuclear Property** Atomic mass 235.043930131 ± 0.00000192 u Mass excess 40.920654 ± 0.001789 MeV Binding energy / A 7.590906 ± 0.000008 MeV -0.12422 ± 0.000854 MeV Beta decay energy 0.7204 ± 0.0006 % Abundance E_{ex}(keV) J_{π} Half-life Decay Modes IS: 0.7204%(6) 0.0 7/2-704 My (1) a: 100% 0.0765 (0.0004) 1/2+ ~26 m IT: 100% * Place the mouse pointer here to see the notes. Neutron-induced Cross Sections

List of Evaluated Nuclear Data Libraries

ENDF/B-VIII.0	Full text		
- Cross sections			
Total cross sections	Plot		
Elastic cross sections	Plot		
Inelastic cross sections	Plot		
(n,anything) cross sections	Plot		
(n,2n) cross sections	Plot		
(n,3n) cross sections	Plot		
Fission cross sections	Plot		
(n,nk) cross sections (click to expand)			
Capture cross sections	Plot		
(n,pk) cross sections (click to expand)			
(n, α_k) cross sections (click to expand)			
ENDF/B-VII.1	Full text		
+ Cross sections			
ENDF/B-VII.0	Full text		
+ Cross sections			
NETRER ERE			

atom.kaeri.re.kr

49

• U-235 fission cross section

atom.kaeri.re.kr

U-238 fission cross section

atom.kaeri.re.kr

동위원소에 따라 반응도가 달라짐
특정 동위원소를 중성자 검출 매질로 활용

원소	Н	D	H ₂ O	D ₂ O	Ве	С	0	Na	Fe	²³⁸ U
충돌 회수 (2 MeV → 1 eV)	15	20	16	29	70	92	121	172	414	1812

- 탄성 산란 유도 → 중성자 에너지를 낮춤
- 중성자 에너지가 낮으면 상호작용 확률이 증가
- 중성자 에너지에 따라 달라짐

중성자 상호작용

Scientific diagram

중성자 검출반응

- $n + {}^{3}\text{He} \rightarrow {}^{3}\text{H} + {}^{1}\text{H} + 0.764 \text{ MeV}$
- $n + {}^{6}Li \rightarrow {}^{4}He + {}^{3}H + 4.79 \text{ MeV}$
- $n + {}^{10}B \rightarrow {}^{7}Li^* + {}^{4}He$

 \rightarrow ⁷Li + ⁴He + 0.48 γ + 2.3 MeV (93%)

$$\rightarrow$$
 ⁷Li + ⁴He + 2.8 MeV (7%)

- $n + {}^{155}Gd \rightarrow Gd^* + \gamma$ -ray \rightarrow conversion electron
- $n + {}^{157}Gd \rightarrow Gd^* + \gamma$ -ray \rightarrow conversion electron
- $n + {}^{235}U \rightarrow fission fragments + {}^{\sim}160 \text{ MeV}$
- $n + {}^{239}Pu \rightarrow fission fragments + {}^{\sim}160 \text{ MeV}$

Element	lsotope	Abundance (%)
Но	³ He	0.0002
пе	⁴He	99.9998
Li	⁶ Li	7.59
	⁷ Li	92.41
В	¹⁰ B	20.00
	¹¹ B	80.00
Gd	¹⁵⁵ Gd	14.80
	¹⁵⁷ Gd	15.65

중성자와 반응 후 발생하는 하전입자 → 짧은 이동거리 → 검출이 용이

2차 입자 이동거리

중성자 영상시스템 구성

측정 대상을 투과한 중성자 검출→ 일반 영상 시스템과 유사 → 위치 분해능이 중요

중성자 영상 검출기

대면적 검출기 제작

중성자 영상 검출 소재

- ZnS:⁶LiF
 - n + ⁶Li -> ⁴He + t + ~5 MeV
 - Resolution from 150 µm to 300 µm,
 - Thermal stopping power of 20%
 - High light yield (10⁵ photons / neutron)
- GadOx ($Gd_2O_2S:Tb$)
 - Gd + n -> e- , energy ≤ 71 keV per neutron capture on average
 - Resolution ~10-20 μm
 - Thermal stopping power up to 80%
 - Low light yield (10³ photons / neutron)

중성자 검출 모드

- 중성자 영상
 - 짧은 시간에 많은 중성자 검출
 - 중성자가 유도한 신호의 양 측정 (적분형)
- 중성자 검출
 - 개별 중성자 측정 (계수형)

대형화물 방사선 검출시스템

특수 핵물질에서 방출되는 중성자 검출 → 중성자 카운팅

³He 중성자 검출기

~25,000 ions and electrons produced per neutron (~4 \times 10⁻¹⁵ C)

¹⁰BF₃ 중성자 검출기

~65,000 ions and electrons produced per neutron (~ 1×10^{-14} C)

검출기 내로 입사되는 중성자 카운팅 → 방향, 위치 무관

Various He-3 and BF3 Proportional Counters

³He 중성자 검출기

특정 방향으로 입사되는 중성자 카운팅

¹⁰B 박막 중성자 검출

- 핵물질 방출 중성자 검출
- >1 m² 검출 면적
- ³He 검출기 수급에 어려움 (수천만원/대 * 10여대)
- ¹⁰BF₃ 검출기는 효율이 낮음 (수백만원/대 *100여대)

¹⁰B 박막 이용 검출기 구성

¹⁰B 박막 중성자 검출기

¹⁰B 박막 검출기 개발

- Boron 특성
 - 모스 굳기계(Mohs hardness) : ~9.5 (다이아몬드 : 10)
- 중성자 반응 후 2차입자 투과 깊이
 - 두께 : < 5 um
- 전기적 특성
 - 전도성 필요

전도성 ¹⁰B 박막 제작

- 인쇄공법
 - Dr. Blade (등사기와 유사)
- 진공 증착
 - Sputtering
 - Vacuum spray
- 침강법

전도성 ¹⁰B 박막 제작

• 인쇄공법

리튬이차전지 극판 제조기술을 이용하여 유연성, 전도성 및 접착력이 좋은 붕소 박막 제조 도전재: 비전도성 붕소 박막에 전기전도성 부여 바인더: 붕소입자 간 또는 붕소와 substrate 간에 결착력 부여

전도성 ¹⁰B 박막 제작

• 진공증착

제작된 대면적 B 박막 (길이 1m 가능)

71

¹⁰B 박막 기반 중성자 검출기

Fabrication of the boron coating layer by sputtering

Detector assembly

특허 등록

특성 평가 결과

- 인쇄 방식
 - 박막 두께 제조 한계 (수십 um)
- 진공 증착
 - 박막 제조 비용 & 시간
 - 높은 ¹⁰B 재료 손실 (~ 50 %)
- 침강법
 - 현재 진행중

• 침강법에 의한 ¹⁰B 박막 제작

• 침강법에 의한 ¹⁰B 박막 제작

[¹⁰B 파우더]

[파쇄]

[용액준비]

[혼합]

[AL 디스크]

[중성자 변환막]

[¹⁰B 침강법]

중성자 검출기 성능평가 진행중

High energy primary cosmic ray (proton, electron or heavy ion)

30 MeV급 고속 중성자원

• 정읍 30 MeV 사이클로트론 시설에 구축

고속중성자 에너지 분포, 선속 분포 측정 예정(기술 개발 진행중)

요약

물리학 배경지식 + 방사선기술 + 신호처리 & 데이터 획득 시스템 이해 필요

- 한전 KPS, 두산에너빌러티 등
- 한국전력, 한수원, 한전원자력연료, 한국전력기술
- **산**(학부 이상)
- 한수원중앙연구원, 한수원보건연구원 등
- 한국원자력안전기술원, 한국원자력통제기술원
- 한국원자력연구원
- **연**(석사 이상)
- 과기부, 산자부, 원안위 등
- 관

원자력 유관 기관

Q&A

AXIOS-MAX: THEORY OF XRF - GETTING ACQUAINTED WITH THE PRINCIPLES