CPLUOS Astrophysics team meeting

Asia/Seoul
물리학과

물리학과

Zoom Meeting https://uos-ac-kr.zoom.us/j/8264902652 Meeting ID: 826 490 2652
Description

https://uos-ac-kr.zoom.us/j/8264902652

    • 14:00 15:00
      COSMOLOGY
      • 14:00
        Hyeonmo's Report 10m
        Speaker: Hyeonmo Koo (University of Seoul)

        Head-on Collsion of FDM/CDM Halos

        • Snapshot: FDM vs CDM
      • 14:10
        Young's report. FoF and MST algorithm 10m
        Speaker: Young Ju

        FoF and MST algorithm

        • Controlled data 1
          • Number of clusters: 50
          • sig = 1: separated data
          • sig = 10: diffused data
          • Aim: MGS algorithm can find clusters as similar to other algorithms
        • Controlled data 2
          • Number of clusters: 50
          • Distribution of galaxy: power-law
          • Aim: MGS has different behavior
        • Controlled data 3
          • Number of clusters: 500
          • Generate cluster from halo
          • mass function and HOD
          • Aim: Test algorithms for more complex system
        • Real data: kias vagc data
          • Linking length (h-1Mpc) - Number of clusters graph
        • Real data: kias vagc data
          • 1st cluster: the biggest cluster
            • Percolation: MGS
          • 2nd cluster
      • 14:20
        Hannah's Report 10m

        See the slides from 8p

        Speaker: Hannah Jhee (University of Seoul)

        Filament

        • Snapshot: Fig R1
          • Filament structures from  z = 1 ~ z = 0 with halo distribution (green triangles).
          • Filament evolution as a function of time (see the color scheme).
      • 14:30
        Sumi's report 10m
        Speaker: Sumi Kim (University of Seoul)

        Calculating Bright Galaxy Survey (BGS) 2 pcf

        • DA02 BGS EZmocks 2 pcf I = 0, Nran = 20, used W_fkp calculation
          • s [Mpc/h] - ξ2 (s)s2 [Mpc/h]2 graph
            • 0.1 < z < 0.5
            • 0.1 < z < 0.2
            • 0.2 < z < 0.3
            • 0.3 < z < 0.4 is bigger than other things
            • 0.4 < z < 0.5
            • Plot → Strange!
          • WFKP: FKP weight
            • Feldman, Kaiser, and Peacock
          • Function of number density, to optimize the clustering measurements facing shot noise and cosmic variance.
        • Feedback
          • 1. See the coverage of data and random
          • 2. Calculate with 5 Mpc bin, not 1 Mpc
          • 3. Compare individuals, not average
      • 14:40
        CLML 10m

        Cosmology with Large scale structure using Machine Learning

        Speaker: Se Yeon Hwang

        Cosmology with Large scale structure using Machine Learning (CLML)

        • Outline
          • input data
          • ViT
        • Input data
          • Using comoving position (x, y, z) from PINOCCHIO catalogs
            • There are 164,195 halos
            • (boxsize = 1 Gpc, number of particles = 5123 , zstart = 0.3)
          • Using theta and phi from PINOCCHIO catalogs
            • Theta and phi of light cone
          • We rotate the coordinate like this
          • Cut range
          • Make 3-D data using theta, phi and observed  redshift (which is on the redshift-space)
            • theta - z
            • phi - z
            • phi - theta
        • Check minimum mass
          • Every simulation has different minimum halo mass because of Ωm
          • We have to set the same minimum halo mass for all dataset, so we found maximum of minimums applied the mass cut
        • Parameter test with each range cut
          • Reference parameter (Abacus)
            • m, Ωb, Ωcdm, σ8, w0, wa, h, ns)
              • (0.3133, 0.0493, 0.264, 0.8079, -1, 0, 0.6736, 0.9649)
              • Omega_m = [0.25, 0.40]
              • sigma_8 = [0.74, 0.85]
              • w0 = [-1.3, 0.7]
              • wa = [-0.3, 0.3]
              • ns = [0.9, 1.1]
              • h = [0.6, 0.8]
            • For the lower (blue) and upper (orange), I used same random seed for each parameters and for the reference I used different random seed
            • x axis - k
            • y axis - p (ktaret) - p (kref)
        • Vision Transformer (ViT)
        • Making patches
          • In 2-D
            • Using tensorflow.image.extract_patches
          • In 3-D
            • Using tensorflow.extract_volume_patches
        • ViT Tutorial
          • https://keras.io/examples/vision/image_classification_with_vision_transformer/
          • We are doing test running
      • 14:50
        Dr.Sabiu's Report 10m
        Speaker: Dr Cristiano Sabiu (University of Seoul)

        Deep Learning the Deep Sky: Recovering low surface brightness objects with machine learning

        • No progress
    • 15:00 15:10
      Discussion 10m