## W Mass Measurement at LHC

Un-ki Yang Seoul National University

W Mass Workshop, Univ. of Seoul, May 19, 2022

## W mass at LHC



 $m_W = 80369.5 \pm 6.8 \text{ MeV(stat.)} \pm 10.6 \text{ MeV(exp. syst.)} \pm 13.6 \text{ MeV(mod. syst.)}$ 

= 80369.5  $\pm$  18.5 MeV,

### How to measure the W mass





$$\vec{p}_{\rm T}^{\rm miss} = -\left(\vec{p}_{\rm T}^{\,\ell} + \vec{u}_{\rm T}\right)$$
$$2\vec{p}_{\rm T}^{\,\ell} \vec{p}_{\rm miss}^{\rm miss} (1 - \cos\Lambda\phi)$$

> Use leptonic decay e/µ channels

Sensitive variables to W mass: p<sub>T</sub>(e/μ), m<sub>T</sub>, p<sub>T</sub>(MET):

Jacobian edge provides the mass of W





$$\frac{d\sigma}{dp_t} = \frac{d\sigma}{d\cos\theta} * \frac{d\cos\theta}{dp_t} :$$
$$= \frac{d\sigma}{d\cos\theta} * \frac{2p_t}{M_W} * \frac{1}{\sqrt{(\frac{M_W}{2})^2 - p_t^2}}$$

## How to measure the W mass



#### $> m_T$ method:

- Insensitive to p<sub>T</sub>(W)
- Reconstruction of p<sub>T</sub>(v) sensitive to hadronic response and multiple interactions

#### $\succ$ p<sub>T</sub>(1) method:

- Sensitive to p<sub>T</sub>(W): PDF, PS,UE
- Sensitive to W helicity (+1,-1,0) (different from Tevatron)

## **Measurement Overview**



- Use Z (-->ee,μμ) to derive "physics model" for recoil and lepton calibration
- > Validate the physics model by extracting  $m_z$  from  $p_T(I)$  and  $m_T$
- $\succ$  Extract  $m_w$  in several categories and combine



ATL-PHYS-PUB-2014-015

50



- Heavy-flavor-initiated processes play a larger role (25%):  $\triangleright$ 
  - 5% at Tevatron, especially due to strange sea PDF
- Different rapidity dist. for W<sup>+</sup>, W<sup>-</sup> (larger gluon-quark contribution too)  $\triangleright$
- Hard to extrapolate to W from  $p_{T}(Z)$  data  $\triangleright$

flavour decomposition of W cross sections

 $p_{T}(W)$ 

Tevatron: mostly one polarization +1 for W+, -1 W-,  $\triangleright$ **p**<sub>T</sub>(I) but at LHC, (+1,-1,0) for W+

## Why tough at LHC?



/

## **Event sample at ATLAS**

W samples at ATLAS ( $W \rightarrow ev, \mu v$ ) :

#### Lepton selections:

- muons isolated (track-based)  $|\eta| < 2.4$
- electrons isolated (track+calorimeter-based) tight identified  $0 < |\eta| < 1.2$ ,
  - 1.8<*|*η*|*<2.4

<u>Kinematic requirements:</u> p<sub>T</sub>I>30 GeV, m<sub>T</sub>>60 GeV, MET>30 GeV and recoil(u<sub>T</sub>)<30 GeV

#### ~6M/8M observed in the electron/muon channel

| $ \eta_\ell $ range                                                           | 0–0.8                     | 0.8 - 1.4          | 1.4 - 2.0        | 2.0 - 2.4               | Inclusive                 |
|-------------------------------------------------------------------------------|---------------------------|--------------------|------------------|-------------------------|---------------------------|
| $ \begin{array}{c} W^+ \to \mu^+ \nu \\ W^- \to \mu^- \bar{\nu} \end{array} $ | $\frac{1283332}{1001592}$ | $1063131\769876$   | $1377773\916163$ | $\frac{885582}{547329}$ | $\frac{4609818}{3234960}$ |
| $ \eta_\ell $ range                                                           | 0-0.6                     | 0.6 - 1.2          |                  | 1.8 - 2.4               | Inclusive                 |
| $ \begin{array}{c} W^+ \to e^+ \nu \\ W^- \to e^- \bar{\nu} \end{array} $     | $1233960\969170$          | $1207136 \\908327$ |                  | $\frac{956620}{610028}$ | ${3397716}\ {2487525}$    |



| CDF |                  |                | ATL      | .AS        | LHC                |  |  |
|-----|------------------|----------------|----------|------------|--------------------|--|--|
| 6.4 |                  |                | 6.       | 8          | 23                 |  |  |
|     | 2.4<br>1.8       | Μ (μ)<br>Μ (e) | 8M<br>6M | (μ)<br>(e) | <b>2.4M</b><br>(μ) |  |  |
| _   |                  |                |          |            |                    |  |  |
| T   | eV 🔪             | 8 Te           | eV       | 13         | 3 TeV              |  |  |
| .5  | fb <sup>-1</sup> | ~20.3          | fb⁻¹     | ~3         | 0 fb-1             |  |  |

 $190 \times 10^{6}$ 

80×10<sup>6</sup>

15×10<sup>6</sup>

## **Electron Calibration**

- > Electron energy measurement from the EM calorimeter
- Corrections for scale and resolution are derived from the Z events: phi dependent corrections are important for MET
- > Validations using J/Psi $\rightarrow$ ee, Z $\rightarrow$ ee $\gamma$  (~0.05%)



| $ \eta_{\ell} $ range              | Combined                |             |  |  |
|------------------------------------|-------------------------|-------------|--|--|
| Kinematic distribution             | $p_{\mathrm{T}}^{\ell}$ | $m_{\rm T}$ |  |  |
| $\delta m_W$ [MeV]                 |                         |             |  |  |
| Energy scale                       | 8.1                     | 8.0         |  |  |
| Energy resolution                  | 3.5                     | 5.5         |  |  |
| Energy linearity                   | 3.4                     | 5.5         |  |  |
| Energy tails                       | 2.3                     | 3.3         |  |  |
| Reconstruction efficiency          | 7.2                     | 6.0         |  |  |
| Identification efficiency          | 7.3                     | 5.6         |  |  |
| Trigger and isolation efficiencies | 0.8                     | 0.9         |  |  |
| Charge mismeasurement              | 0.1                     | 0.1         |  |  |
| Total                              | 14.2                    | 14.3        |  |  |

## **Muon Calibration**

- Muon identified from combined ID+MS tracks, but momentum measurment from ID only simplifies calibration
- > Calibration factors from ID-only muons from  $Z \rightarrow \mu\mu$  and sagitta bias from  $Z \rightarrow \mu\mu$  and E/p of W(+,-) $\rightarrow e\nu$  (~0.05%)



## **Recoil Calibration**

- > Vector sum of the all cluster momenta  $\rightarrow$  a measure of  $p_T(W)$
- Calibrate the scale and resolution corrections from the p<sub>T</sub> balance in Z events



## **Physics modelling**

W, Z samples are generated by Powheg + Pythia 8.

 $d\sigma$ 

Each event is reweighted to include the higher-order QCD and EWK corrections, as well as the fit results to match kinematic distributions



- The Z cross section is reorganized by factorizing the dynamics of the boson production and kinematic of the boson decay
- Use this model to fit the free parameters of the model using Z events

### **Rapidity and angular coefficients**

- > The rapidity dist. and Ai coefficients modelled with NNLO predictions and the CT10nnlo PDF: validated by 8 TeV Z data
- The rapidity dist. is very sensitive to PDF. (the CT10nnlo PDF is consistent with the unsuppressed strange quark PDF.



Good agreement

#### $\succ$ An observed discrepancy for A<sub>2</sub>

| W-boson charge         | Com                     | bined            |
|------------------------|-------------------------|------------------|
| Kinematic distribution | $p_{\mathrm{T}}^{\ell}$ | $m_{\mathrm{T}}$ |
| Angular coefficients   | 5.8                     | 5.3              |

### Z transverse momentum

- > Parton shower MC Pythia 8 tuned to the  $p_T(Z)$  data AZ tune
- > Better than 1% for  $p_T(Z) < 40 \text{ GeV}$



Pythia 8 is used to transfer from the p<sub>T</sub>(Z) to the p<sub>T</sub>(W) dist. and to evaluate the theory uncertainty on the W/Z p<sub>T</sub> ratio



### W transverse momentum

- The Pythia 8 AZ tune is used to extrapolate to W, considering relative variations of the W and Z p<sub>T</sub> distributions
- The Pythia 8 predictions are softer than the NNLL resummed predictions (DYRES,Resbos, CuTE) for a give Z p<sub>T</sub> distribution
- But the resummed predictions disfavored by the data, and the Pythia is in a good agreement: the extrapolation works!



- Current precision of the data (~3%) and broad bin size (~8 GeV) limit in reducing syst. uncertainty
- Measurements with ~ 5 GeV bin size with ~1% precision will be useful

# W p<sub>T</sub> uncertainties

- Production with heavy flavor quarks makes a difference between W and Z
- But higher-order QCD effects are mostly correlated between W and Z produced by light quarks



| W-boson charge                                               | Combined                |                  |  |
|--------------------------------------------------------------|-------------------------|------------------|--|
| Kinematic distribution                                       | $p_{\mathrm{T}}^{\ell}$ | $m_{\mathrm{T}}$ |  |
| Charm-quark mass                                             | 1.2                     | 1.5              |  |
| Parton shower $\mu_{\rm F}$ with heavy-flavour decorrelation | 5.0                     | 6.9              |  |
| Parton shower PDF uncertainty                                | 1.0                     | 1.6              |  |

## **PDF uncertainties**

- PDF uncertainty series of CT10nnlo are applied simultaneously to the boson rapidity, Ai, and p<sub>T</sub> distributions
- Only relative variations of the pT(W) and pT(Z) induced by the PDFs are considered as the PDF uncertainty



# Summary of physics modelling

| -   | W-boson charge                                               | W                       | 7+               | W                     | 7—               | Com                     | bined            |
|-----|--------------------------------------------------------------|-------------------------|------------------|-----------------------|------------------|-------------------------|------------------|
|     | Kinematic distribution                                       | $p_{\mathrm{T}}^{\ell}$ | $m_{\mathrm{T}}$ | $p_{\mathrm{T}}^\ell$ | $m_{\mathrm{T}}$ | $p_{\mathrm{T}}^{\ell}$ | $m_{\mathbf{T}}$ |
| -   | $\delta m_W [{ m MeV}]$                                      |                         |                  |                       |                  |                         |                  |
|     | Fixed-order PDF uncertainty                                  | 13.1                    | 14.9             | 12.0                  | 14.2             | 8.0                     | 8.7              |
|     | AZ tune                                                      | 3.0                     | 3.4              | 3.0                   | 3.4              | 3.0                     | 3.4              |
| QUD | Charm-quark mass                                             | 1.2                     | 1.5              | 1.2                   | 1.5              | 1.2                     | 1.5              |
|     | Parton shower $\mu_{\rm F}$ with heavy-flavour decorrelation | 5.0                     | 6.9              | 5.0                   | 6.9              | 5.0                     | 6.9              |
|     | Parton shower PDF uncertainty                                | 3.6                     | 4.0              | 2.6                   | 2.4              | 1.0                     | 1.6              |
|     | Angular coefficients                                         | 5.8                     | 5.3              | 5.8                   | 5.3              | 5.8                     | 5.3              |
| -   | Total                                                        | 15.9                    | 18.1             | 14.8                  | 17.2             | 11.6                    | 12.9             |

#### PDF uncertainties is the dominant followed by pT(W) uncertainty due to the heavy-flavor initiated production

| and ESD using Photos         | Decay channel                       | W -                     | $\rightarrow ev$ | W -                     | → µν             |
|------------------------------|-------------------------------------|-------------------------|------------------|-------------------------|------------------|
| and FSR using Fliolos        | Kinematic distribution              | $p_{\mathbf{T}}^{\ell}$ | $m_{\mathrm{T}}$ | $p_{\mathrm{T}}^{\ell}$ | $m_{\mathrm{T}}$ |
|                              | $\delta m_W$ [MeV]                  |                         |                  |                         |                  |
| EW                           | FSR (real)                          | < 0.1                   | < 0.1            | < 0.1                   | < 0.1            |
|                              | Pure weak and IFI corrections       | 3.3                     | 2.5              | 3.5                     | 2.5              |
|                              | FSR (pair production)               | 3.6                     | 0.8              | 4.4                     | 0.8              |
|                              | Total                               | 4.9                     | 2.6              | 5.6                     | 2.6              |
| QED emission of pairs : form | nally of higher order, but a signif | ficant a                | dditiona         | al                      | 2.               |

## Backgrounds

- > EWK and top bkgds are estimated by using MC
- Multijet bkgds is done using data-driven techniques



| Kinematic distribution              | $p_{\mathrm{T}}^{\ell}$ |                      |       |                         | $m_{\mathrm{T}}$ |                    |                         |       |  |
|-------------------------------------|-------------------------|----------------------|-------|-------------------------|------------------|--------------------|-------------------------|-------|--|
| Decay channel                       | W -                     | $W \rightarrow e\nu$ |       | $W \rightarrow \mu \nu$ |                  | $\rightarrow e\nu$ | $W \rightarrow \mu \nu$ |       |  |
| W-boson charge                      | $W^+$                   | $W^-$                | $W^+$ | $W^-$                   | $W^+$            | $W^-$              | $W^+$                   | $W^-$ |  |
| $\delta m_W$ [MeV]                  |                         |                      |       |                         |                  |                    |                         |       |  |
| $W \to \tau \nu$ (fraction, shape)  | 0.1                     | 0.1                  | 0.1   | 0.2                     | 0.1              | 0.2                | 0.1                     | 0.3   |  |
| $Z \to ee$ (fraction, shape)        | 3.3                     | 4.8                  | _     | _                       | 4.3              | 6.4                | _                       | _     |  |
| $Z \to \mu \mu$ (fraction, shape)   |                         | _                    | 3.5   | 4.5                     | _                | _                  | 4.3                     | 5.2   |  |
| $Z \to \tau \tau$ (fraction, shape) | 0.1                     | 0.1                  | 0.1   | 0.2                     | 0.1              | 0.2                | 0.1                     | 0.3   |  |
| WW, WZ, ZZ (fraction)               | 0.1                     | 0.1                  | 0.1   | 0.1                     | 0.4              | 0.4                | 0.3                     | 0.4   |  |
| Top (fraction)                      | 0.1                     | 0.1                  | 0.1   | 0.1                     | 0.3              | 0.3                | 0.3                     | 0.3   |  |
| Multijet (fraction)                 | 3.2                     | 3.6                  | 1.8   | 2.4                     | 8.1              | 8.6                | 3.7                     | 4.6   |  |
| Multijet (shape)                    | 3.8                     | 3.1                  | 1.6   | 1.5                     | 8.6              | 8.0                | 2.5                     | 2.4   |  |
| Total                               | 6.0                     | 6.8                  | 4.3   | 5.3                     | 12.6             | 13.4               | 6.2                     | 7.4   |  |

## $W p_T and m_T distributions$





Fitting ranges: 32<p<sup>+</sup><45 GeV, 66<m<sub>T</sub><99 GeV

## **Summary of corrections**

> After all corrections are applied, consistent results are obtained



### Test on Z Mass using one lepton



- Results are consistent with the combined LEP values within uncertainties
- $\succ$  m<sub>T</sub> method slightly lower due to recoil modeling?

## **Consistency Checks**

Results were checked in different categories, but also in different pile-up and u<sub>T</sub> bins



## W mass

| Channel                                       | $m_W$   | Stat. | Muon  | Elec. | Recoil | Bckg. | QCD  | EW   | PDF  | Total |
|-----------------------------------------------|---------|-------|-------|-------|--------|-------|------|------|------|-------|
| m <sub>T</sub> -Fit                           | [MeV]   | Unc.  | Unc.  | Unc.  | Unc.   | Unc.  | Unc. | Unc. | Unc. | Unc.  |
| $W^+ \rightarrow \mu \nu,  \eta  < 0.8$       | 80371.3 | 29.2  | 12.4  | 0.0   | 15.2   | 8.1   | 9.9  | 3.4  | 28.4 | 47.1  |
| $W^+ \to \mu \nu, 0.8 <  \eta  < 1.4$         | 80354.1 | 32.1  | 19.3  | 0.0   | 13.0   | 6.8   | 9.6  | 3.4  | 23.3 | 47.6  |
| $W^+ \to \mu \nu, 1.4 <  \eta  < 2.0$         | 80426.3 | 30.2  | 35.1  | 0.0   | 14.3   | 7.2   | 9.3  | 3.4  | 27.2 | 56.9  |
| $W^+ \to \mu \nu, 2.0 <  \eta  < 2.4$         | 80334.6 | 40.9  | 112.4 | 0.0   | 14.4   | 9.0   | 8.4  | 3.4  | 32.8 | 125.5 |
| $W^- \rightarrow \mu \nu,  \eta  < 0.8$       | 80375.5 | 30.6  | 11.6  | 0.0   | 13.1   | 8.5   | 9.5  | 3.4  | 30.6 | 48.5  |
| $W^- \rightarrow \mu \nu, 0.8 <  \eta  < 1.4$ | 80417.5 | 36.4  | 18.5  | 0.0   | 12.2   | 7.7   | 9.7  | 3.4  | 22.2 | 49.7  |
| $W^- \to \mu \nu, 1.4 <  \eta  < 2.0$         | 80379.4 | 35.6  | 33.9  | 0.0   | 10.5   | 8.1   | 9.7  | 3.4  | 23.1 | 56.9  |
| $W^- \rightarrow \mu \nu, 2.0 <  \eta  < 2.4$ | 80334.2 | 52.4  | 123.7 | 0.0   | 11.6   | 10.2  | 9.9  | 3.4  | 34.1 | 139.9 |
| $W^+ \rightarrow ev,  \eta  < 0.6$            | 80352.9 | 29.4  | 0.0   | 19.5  | 13.1   | 15.3  | 9.9  | 3.4  | 28.5 | 50.8  |
| $W^+ \rightarrow e \nu, 0.6 <  \eta  < 1.2$   | 80381.5 | 30.4  | 0.0   | 21.4  | 15.1   | 13.2  | 9.6  | 3.4  | 23.5 | 49.4  |
| $W^+ \rightarrow ev, 1, 8 <  \eta  < 2.4$     | 80352.4 | 32.4  | 0.0   | 26.6  | 16.4   | 32.8  | 8.4  | 3.4  | 27.3 | 62.6  |
| $W^- \rightarrow ev,  \eta  < 0.6$            | 80415.8 | 31.3  | 0.0   | 16.4  | 11.8   | 15.5  | 9.5  | 3.4  | 31.3 | 52.1  |
| $W^- \rightarrow ev, 0.6 <  \eta  < 1.2$      | 80297.5 | 33.0  | 0.0   | 18.7  | 11.2   | 12.8  | 9.7  | 3.4  | 23.9 | 49.0  |
| $W^- \rightarrow e \nu, 1.8 <  \eta  < 2.4$   | 80423.8 | 42.8  | 0.0   | 33.2  | 12.8   | 35.1  | 9.9  | 3.4  | 28.1 | 72.3  |
| p <sub>T</sub> -Fit                           |         |       |       |       |        |       |      |      |      |       |
| $W^+ \rightarrow \mu \nu,  \eta  < 0.8$       | 80327.7 | 22.1  | 12.2  | 0.0   | 2.6    | 5.1   | 9.0  | 6.0  | 24.7 | 37.3  |
| $W^+ \rightarrow \mu \nu, 0.8 <  \eta  < 1.4$ | 80357.3 | 25.1  | 19.1  | 0.0   | 2.5    | 4.7   | 8.9  | 6.0  | 20.6 | 39.5  |
| $W^+ \rightarrow \mu \nu, 1.4 <  \eta  < 2.0$ | 80446.9 | 23.9  | 33.1  | 0.0   | 2.5    | 4.9   | 8.2  | 6.0  | 25.2 | 49.3  |
| $W^+ \rightarrow \mu \nu, 2.0 <  \eta  < 2.4$ | 80334.1 | 34.5  | 110.1 | 0.0   | 2.5    | 6.4   | 6.7  | 6.0  | 31.8 | 120.2 |
| $W^- \rightarrow \mu \nu,  \eta  < 0.8$       | 80427.8 | 23.3  | 11.6  | 0.0   | 2.6    | 5.8   | 8.1  | 6.0  | 26.4 | 39.0  |
| $W^- \rightarrow \mu \nu, 0.8 <  \eta  < 1.4$ | 80395.6 | 27.9  | 18.3  | 0.0   | 2.5    | 5.6   | 8.0  | 6.0  | 19.8 | 40.5  |
| $W^- \rightarrow \mu \nu, 1.4 <  \eta  < 2.0$ | 80380.6 | 28.1  | 35.2  | 0.0   | 2.6    | 5.6   | 8.0  | 6.0  | 20.6 | 50.9  |
| $W^- \rightarrow \mu \nu, 2.0 <  \eta  < 2.4$ | 80315.2 | 45.5  | 116.1 | 0.0   | 2.6    | 7.6   | 8.3  | 6.0  | 32.7 | 129.6 |
| $W^+ \rightarrow ev,  \eta  < 0.6$            | 80336.5 | 22.2  | 0.0   | 20.1  | 2.5    | 6.4   | 9.0  | 5.3  | 24.5 | 40.7  |
| $W^+ \rightarrow ev, 0.6 <  \eta  < 1.2$      | 80345.8 | 22.8  | 0.0   | 21.4  | 2.6    | 6.7   | 8.9  | 5.3  | 20.5 | 39.4  |
| $W^+ \rightarrow ev, 1, 8 <  \eta  < 2.4$     | 80344.7 | 24.0  | 0.0   | 30.8  | 2.6    | 11.9  | 6.7  | 5.3  | 24.1 | 48.2  |
| $W^- \rightarrow e\nu,  \eta  < 0.6$          | 80351.0 | 23.1  | 0.0   | 19.8  | 2.6    | 7.2   | 8.1  | 5.3  | 26.6 | 42.2  |
| $W^- \rightarrow e \nu, 0.6 <  \eta  < 1.2$   | 80309.8 | 24.9  | 0.0   | 19.7  | 2.7    | 7.3   | 8.0  | 5.3  | 20.9 | 39.9  |
| $W^- \rightarrow ev, 1.8 <  \eta  < 2.4$      | 80413.4 | 30.1  | 0.0   | 30.7  | 2.7    | 11.5  | 8.3  | 5.3  | 22.7 | 51.0  |

W pT(I): lepton calib. (15~35 MeV)

## W mass combination

| Combined categories                                                | Value<br>[MeV] | Stat.<br>Unc. | Muon<br>Unc. | Elec.<br>Unc. | Recoil<br>Unc. | Bckg.<br>Unc. | QCD<br>Unc. | EW<br>Unc. | PDF<br>Unc. | Total<br>Unc. | $\chi^2/dof$ of Comb. |
|--------------------------------------------------------------------|----------------|---------------|--------------|---------------|----------------|---------------|-------------|------------|-------------|---------------|-----------------------|
| $m_{\rm T}, W^+, e^{-\mu}$                                         | 80370.0        | 12.3          | 8.3          | 6.7           | 14.5           | 9.7           | 9.4         | 3.4        | 16.9        | 30.9          | 2/6                   |
| $m_{\rm T}, W^-, e^-\mu$                                           | 80381.1        | 13.9          | 8.8          | 6.6           | 11.8           | 10.2          | 9.7         | 3.4        | 16.2        | 30.5          | 7/6                   |
| $m_{\rm T}, W^{\pm}, e$ - $\mu$                                    | 80375.7        | 9.6           | 7.8          | 5.5           | 13.0           | 8.3           | 9.6         | 3.4        | 10.2        | 25.1          | 11/13                 |
| $p_{\mathrm{T}}^{\ell}, W^+, e^{-\mu}$                             | 80352.0        | 9.6           | 6.5          | 8.4           | 2.5            | 5.2           | 8.3         | 5.7        | 14.5        | 23.5          | 5/6                   |
| $p_{\mathrm{T}}^{\ell}, W^{-}, e^{-\mu}$                           | 80383.4        | 10.8          | 7.0          | 8.1           | 2.5            | 6.1           | 8.1         | 5.7        | 13.5        | 23.6          | 10/6                  |
| $p_{\mathrm{T}}^{\ell}, W^{\pm}, e$ - $\mu$                        | 80369.4        | 7.2           | 6.3          | 6.7           | 2.5            | 4.6           | 8.3         | 5.7        | 9.0         | 18.7          | 19/13                 |
| $p_{\mathrm{T}}^{\ell}, W^{\pm}, e$                                | 80347.2        | 9.9           | 0.0          | 14.8          | 2.6            | 5.7           | 8.2         | 5.3        | 8.9         | 23.1          | 4/5                   |
| $m_{\rm T}, W^{\pm}, e$                                            | 80364.6        | 13.5          | 0.0          | 14.4          | 13.2           | 12.8          | 9.5         | 3.4        | 10.2        | 30.8          | 8/5                   |
| $m_{\rm T}$ - $p_{\rm T}^{\ell}$ , $W^+$ , $e$                     | 80345.4        | 11.7          | 0.0          | 16.0          | 3.8            | 7.4           | 8.3         | 5.0        | 13.7        | 27.4          | 1/5                   |
| $m_{\rm T}$ - $p_{\rm T}^{\ell}$ , $W^-$ , $e$                     | 80359.4        | 12.9          | 0.0          | 15.1          | 3.9            | 8.5           | 8.4         | 4.9        | 13.4        | 27.6          | 8/5                   |
| $m_{\mathrm{T}}$ - $p_{\mathrm{T}}^{\ell}$ , $W^{\pm}$ , $e$       | 80349.8        | 9.0           | 0.0          | 14.7          | 3.3            | 6.1           | 8.3         | 5.1        | 9.0         | 22.9          | 12/11                 |
| $p_{\mathrm{T}}^{\ell}, W^{\pm}, \mu$                              | 80382.3        | 10.1          | 10.7         | 0.0           | 2.5            | 3.9           | 8.4         | 6.0        | 10.7        | 21.4          | קר                    |
| $m_{\rm T}, W^{\pm}, \mu$                                          | 80381.5        | 13.0          | 11.6         | 0.0           | 13.0           | 6.0           | 9.6         | 3.4        | 11.2        | 27.2          | 3/7                   |
| $m_{\mathrm{T}}$ - $p_{\mathrm{T}}^{\ell}$ , $W^{+}$ , $\mu$       | 80364.1        | 11.4          | 12.4         | 0.0           | 4.0            | 4.7           | 8.8         | 5.4        | 17.6        | 27.2          | 5/7                   |
| $m_{\rm T}$ - $p_{\rm T}^{\ell}$ , $W^-$ , $\mu$                   | 80398.6        | 12.0          | 13.0         | 0.0           | 4.1            | 5.7           | 8.4         | 5.3        | 16.8        | 27.4          | 3/7                   |
| $m_{\mathrm{T}}$ - $p_{\mathrm{T}}^{\ell}, W^{\pm}, \mu$           | 80382.0        | 8.6           | 10.7         | 0.0           | 3.7            | 4.3           | 8.6         | 5.4        | 10.9        | 21.0          | 10/15                 |
| $m_{\mathrm{T}}$ - $p_{\mathrm{T}}^{\ell}$ , $W^+$ , $e$ - $\mu$   | 80352.7        | 8.9           | 6.6          | 8.2           | 3.1            | 5.5           | 8.4         | 5.4        | 14.6        | 23.4          | 7/13                  |
| $m_{\mathrm{T}}$ - $p_{\mathrm{T}}^{\ell}$ , $W^{-}$ , $e$ - $\mu$ | 80383.6        | 9.7           | 7.2          | 7.8           | 3.3            | 6.6           | 8.3         | 5.3        | 13.6        | 23.4          | 15/13                 |
| $m_{\mathrm{T}}$ - $p_{\mathrm{T}}^{\ell}, W^{\pm}, e$ - $\mu$     | 80369.5        | 6.8           | 6.6          | 6.4           | 2.9            | 4.5           | 8.3         | 5.5        | 9.2         | 18.5          | 29/27                 |

Lepton & pT(I), mT(W) correlated: lepton effect is reduced

PDF anti-corr. for W+ and W-

## **ATLAS W mass results**

| Combined                                                          | Value   | Stat. | Muon | Elec. | Recoil | Bckg. | QCD  | EWK  | PDF  | Total | $\chi^2/dof$ |
|-------------------------------------------------------------------|---------|-------|------|-------|--------|-------|------|------|------|-------|--------------|
| categories                                                        | [MeV]   | Unc.  | Unc. | Unc.  | Unc.   | Unc.  | Unc. | Unc. | Unc. | Unc.  | of Comb.     |
| $m_{\mathrm{T}}$ - $p_{\mathrm{T}}^{\ell}$ , $W^{\pm}$ , e- $\mu$ | 80369.5 | 6.8   | 6.6  | 6.4   | 2.9    | 4.5   | 8.3  | 5.5  | 9.2  | 18.5  | 29/27        |

 $m_W = 80369.5 \pm 6.8 \text{ MeV}(\text{stat.}) \pm 10.6 \text{ MeV}(\text{exp. syst.}) \pm 13.6 \text{ MeV}(\text{mod. syst.})$ 

= 80369.5  $\pm$  18.5 MeV,



## **Comparison with CDF**

#### Modeling

|               | CDF           | ATLAS         | LHCb                 |  |  |
|---------------|---------------|---------------|----------------------|--|--|
| Baseline      | RESBOS        | Powheg+Pythia | Powheg+Pythia        |  |  |
| Reweight      | -             | DYNNLO        | DYTURBO              |  |  |
| Parton shower | data-driven   | data-driven   | data-driven          |  |  |
| QED           | PHOTOS+HORACE | PHOTOS        | Pythia+PHOTOS+Herwig |  |  |

### **Uncertainties (in MeV)**

|                                  | CDF           | ATLAS           | LHCb  |
|----------------------------------|---------------|-----------------|-------|
| Statistical                      | 6.4           | 6.8             | 23    |
| Lepton energy/<br>momentum scale | 2 (µ) + 6 (e) | 7* (µ) + 7* (e) | 7 (µ) |
| PDFs                             | 4             | 7*              | 9     |
| Model (excl.<br>PDFs)            | 3.5           | 8*              | 17    |
| Total                            | 9.4           | 18.5            | 31.4  |

## Backup slides

## W boson helicity



## **Flavor decomposition**

