arXiv:2201.09540

# Tracking Halo Orbits and Their Mass Evolution around the Large-scale Filaments

Hannah Jhee<sup>1</sup>, Hyunmi Song<sup>2</sup>, Rory Smith<sup>3,4</sup>, Jihye Shin<sup>3</sup>, Inkyu Park<sup>1</sup> and Clotilde Laigle<sup>5</sup>





# 1. Motivation

#### <u>Contents</u>

#### **1**. Motivation

2. Data and Method

3. Results
3.1. Trajectories in the Phase-space
3.2. Virialization Process
3.3. Mass Evolution
3.4. Mass Segregation

4. Summary





|       | 2. Data and Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | Code                       | Gadget-3 (Springel 2005)                                                                                                                                                           |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          | Cosmological<br>Parameters | $\begin{split} \Omega_{\Lambda} &= 0.7 \\ \Omega_{M} &= 0.3 \\ H_{0} &= 68.4 \ \mathrm{km} \ \mathrm{s}^{-1} \ \mathrm{Mpc}^{-1} \\ \sigma_{8} &= 0.816 \\ n &= 0.967 \end{split}$ |
|       | N. Cluster Bu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>n</b> | Box Size                   | 120 Мрс                                                                                                                                                                            |
|       | (run @ KASI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          | Mass Resolution            | $1.072 \times 10^{9} M_{\odot}/h$                                                                                                                                                  |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          | # of Initial Conditions    | 64                                                                                                                                                                                 |
| space | AMIGA Halo Finder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DisPers  | SE                         |                                                                                                                                                                                    |
|       | $ \begin{bmatrix} 10^3 \\ 10^2 \\ 10^1 \\ 10^0 \end{bmatrix} = \begin{bmatrix} 10^{11} \\ 10^{11} \\ 10^{11} \\ 10^{12} \\ 10^{13} \\ 10^{14} \end{bmatrix} = \begin{bmatrix} 10^{11} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{1$ |          | 10Rvir                     | $\begin{array}{c c} & & & \\ \hline \\$                                                                      |

#### <u>Contents</u>

1. Motivation

#### 2. Data and Method

3. Results

3.1. Trajectories in the Phase-space

3.2. Virialization Process

3.3. Mass Evolution

3.4. Mass Segregation

4. Summary

#### 3. Results 3.1. Trajectories in the Phase-space

#### <u>Contents</u>

1. Motivation

2. Data and Method

# 3. Results 3.1. Trajectories in the Phase-space 3.2. Virialization Process 3.3. Mass Evolution

3.4. Mass Segregation

4. Summary







#### 3. Results 3.1. Trajectories in the Phase-space

#### <u>Contents</u>

1. Motivation

2. Data and Method

#### 3. Results 3.1. Trajectories in the Phase-space

3.2. Virialization Process

- 3.3. Mass Evolution
- 3.4. Mass Segregation

4. Summary

#### Parameters Defined

- Parameters representing a trajectory in the phasespace

| Parameter             | Description                                  |
|-----------------------|----------------------------------------------|
| <i>r</i> <sub>0</sub> | Initial r <sub>perp</sub>                    |
| $v_0$                 | Initial v <sub>perp</sub>                    |
| v <sub>max</sub>      | Maximum $v_{perp}$ before the first crossing |
| r <sub>FC</sub>       | $r_{\rm perp}$ at the first crossing         |
| t <sub>formed</sub>   | Time since formation                         |
| t <sub>FC</sub>       | Time since the first crossing                |

- Pearson Correlation Coefficients 
$$r_{ij} = \frac{\sigma_{ij}^2}{\sigma_i \sigma_j}$$





#### 3. Results **3.2. Virialization of Halos**



# 2. Data and Method 3. Results 3.1. Trajectories in the Phase-space 3.2. Virialization Process 3.3. Mass Evolution 3.4. Mass Segregation

4. Summary

**Contents** 

1. Motivation

### Phase-space Diagrams with $t_{FC}$ Binning







#### <u>Contents</u>

1. Motivation

2. Data and Method

3. Results
3.1. Trajectories in the Phase-space
3.2. Virialization Process
3.3. Mass Evolution

3.4. Mass Segregation

4. Summary

3. Results

# **3.3. Mass Evolution of Halos**



#### <u>Contents</u>

- 1. Motivation
- 2. Data and Method
- 3. Results
  3.1. Trajectories in the Phase-space
  3.2. Virialization Process
  3.3. Mass Evolution
  - 3.4. Mass Segregation

4. Summary

3. Results 3.4. Mass Segregation

#### <u>Contents</u>

1. Motivation

2. Data and Method

3. Results
3.1. Trajectories in the Phase-space
3.2. Virialization Process
3.3. Mass Evolution
3.4. Mass Segregation

4. Summary

 $M/M_{\odot} > 10^{12}$ Massive halos arrive earlier, less massive later

- The fraction of massive halos is lower when farther from the filaments
- Massive *crosser* halos lose their kinetic energy and sink in(consistent with observation)



# SUMMARY

#### <u>Contents</u>

#### 1. Motivation

2. Data and Method

#### 3. Results

3.1. Trajectories in the Phase-space

- 3.2. Virialization Process
- 3.3. Mass Evolution
- 3.4. Mass Segregation

#### 4. Summary

- 1. Halos show a similar trajectory in perpendicular phase-space.
- 2. Halos are virialized in filament environments after at least 6 Gyr since the first pericenter crossing.
- 3. Halos grow in mass as they approach filaments, and will lose mass if the environment is harsh enough.
- 4. Mass segregation of halos around the filaments is mostly caused by massive halos approaching faster than less massive ones, and dynamical friction plays a role for crossers.









#### <u>Contents</u>

1. Motivation

2. Data and Method
 2.1. Simulation Data
 2.2. Structure Identification

3. Results
3.1. Trajectories in the Phase-space
3.2. Virialization Process
3.3. Mass Evolution
3.4. Mass Segregation

4. Summary

## **BACK UP**

#### <u>Contents</u>





#### <u>Contents</u>

1. Motivation

Data and Method
 Simulation Data
 Structure Identification

3. Results

3.1. Trajectories in the Phase-space3.2. Virialization Process3.3. Mass Evolution

3.4. Mass Segregation

4. Summary

#### Comparison between *Bounds* and *Fly-bys*



- Fly-bys are tend to be ancient crossers, formed farther from the filaments(thus higher velocities) and in the lower density environments.
- Mass evolution of bound objects may depend on environments.

#### <u>Contents</u>

1. Motivation

2. Data and Method
 2.1. Simulation Data
 2.2. Structure Identification

3. Results
3.1. Trajectories in the Phase-space
3.2. Virialization Process
3.3. Mass Evolution
3.4. Mass Segregation

4. Summary



#### <u>Contents</u>

#### 1. Motivation

2. Data and Method
 2.1. Simulation Data
 2.2. Structure Identification

#### 3. Results

3.1. Trajectories in the Phase-space3.2. Virialization Process3.3. Mass Evolution3.4. Mass Segregation

4. Summary



#### <u>Contents</u>

#### 1. Motivation

2. Data and Method
 2.1. Simulation Data
 2.2. Structure Identification

#### 3. Results

3.1. Trajectories in the Phase-space3.2. Virialization Process3.3. Mass Evolution3.4. Mass Segregation

4. Summary

#### Dynamical Friction plays a role

한국천문학회



- For crossers, because their mass segregation can be mixed up with their orbital motion
- Without the effect of velocity and time since infall, most massive halos are suppressed to stay closer to the filaments after the infall.

#### 2022-04-15