CPLUOS Astrophysics team meeting

Asia/Seoul
물리학과

물리학과

Zoom Meeting https://uos-ac-kr.zoom.us/j/8264902652 Meeting ID: 826 490 2652
Description

https://uos-ac-kr.zoom.us/j/8264902652

    • COSMOLOGY
      • 1
        Hyeonmo's report - FDM vs CDM Halo Collision
        Speaker: Hyeonmo Koo (University of Seoul)
      • 2
        Young's report. FoF and MST algorithm
        Speaker: Young Ju

        FoF and MST algorithm

        • Aim : Test MGS and other algorithms using 3 Controlled data
          • 1. Simple gaussian model
          • 2. Power-law model & noise
          • 3. Halo mass function & NFW profile
        • Controlled data 1 : simple gaussian model
          • Check the number of clusters for each data set(more than 3 member)
          • Linking-length = 10.0
          • Check the number of clusters with changing linking-length
        • Controlled data 2 : power-law model & noise
          • 50 halo ; 7041 galaxies
          • When noise 50000, MGS value is very high
        • Controlled data 3 : Halo mass function + NFW profile
          • 500 halo ; 50257 galaxies
        • Cutoff = 10Mpc
        • Size scale = Mpc/h
        • 50 halo : minimum galaxies
      • 3
        CHOA(Cosmology of High-Order Statistics)
        Speaker: Sumi Kim (University of Seoul)

        CHOA(Cosmology of High-Order Statistics)

        • Preparing KAS poster
          • The N - point correlation function + machine learning  → cosmology parameter estimation
      • 4
        CLML

        Cosmology with Large scale structure using Machine Learning

        Speaker: Se Yeon Hwang

        CLML(Cosmology with Large scale structure using Machine Learning)

        • Estimating cosmological parameters(Ω_m, σ_8) using 3dCNN
        • About data
          • Halo's xyz position → Numpy.histogramdd → the number of halos in each bin
        • Data type
          • bins_Nhalo, bins_mass, bins_speed
        • Result(minimum value)
          • Apple
            • Om
              • True-pred, mass : 0.0014
              • std, nhalo+mass+vel : 0.0382
            • Sig
              • True-pred, vel : 0.0418
              • std, nhalo : 0.0661
          • Banana
            • Om
              • True-pred, mass : 0.003
              • std, nhalo+mass+vel : 0.0315
            • Sig
              • True-pred, nhalo : 0.0516
              • std, nhalo : 0.0632
      • 5
        Hannah's Report - Weak Lensing with Machine Learning
        Speaker: Hannah Jhee (University of Seoul)
      • 6
        Dr.Sabiu's Report - N-PCF
        Speaker: Dr Cristiano Sabiu (University of Seoul)
    • 7
      Discussion