CPLUOS Astrophysics team meeting

Asia/Seoul
물리학과

물리학과

Zoom Meeting https://uos-ac-kr.zoom.us/j/8264902652 Meeting ID: 826 490 2652
Description

https://uos-ac-kr.zoom.us/j/8264902652

    • COSMOLOGY
      • 1
        Dr.Sangnam Park's Report - FDM_Offset
        Speaker: Sangnam Park
      • 2
        Hyeonmo's report - FDM vs CDM Halo Collision
        Speaker: Hyeonmo Koo (University of Seoul)
      • 3
        Young's report. FoF and MST algorithm
        Speaker: Young Ju

        FoF and MST algorithm

        • Controlled random data 2 : Halo mass function + NFW profile
          • Get NFW profile : radius range = 1~10^4 (kpc)
          • 50 halo ; total number of galaxies = 4512
          • Increase number of halo : 50 → 500 ; total number of galaxies = 50257
          • Linking-Length = 4.0
            • For FoF : mean-separation x 0.74
            • Member > 50, (MST, FoF, MGS, DBSCAN, Hierarchical)
              • (455, 397, 475, 483, 453)
          • fResolution - number of cluster graph(MGS), black line = 500
          • Linking-Length - number of cluster graph(FoF), black line = 500
      • 4
        CHOA(Cosmology of High-Order Statistics)
        Speaker: Sumi Kim (University of Seoul)
      • 5
        Seyeon's report
        Speaker: Se Yeon Hwang

        CLML(Cosmology with Large scale structure using Machine Learning)

        • COSMOLOGICAL PARAMETER ESTIMATION FROM LARGE-SCALE STRUCTURE DEEP LEARNING
        • Parameter option
          • 0.16 <= Ω_m <= 0.46 (step size = 0.01) >> total number = 31
          • 0.4 <= σ_B <= 1.1 (step size = 0.02) >> total number = 36
          • 1) Parameter space
            • Total number of simulation : 1116(=31*36)
              • Used 1000 for training, 116 for test)
          • 2) Different random seed at each case
        • 3d distribution of dark matter halos
          • Ω_m = 0.23, σ_B = 0.84
          • Ω_m = 0.39, σ_B = 0.56
        • Data preparation
          • 1) From the Pinocchio
            • Get particle position(x, y, z)
            • data.shape = [data_length, 3]
          • 2) Density field
            • np.histogramdd(file_name, bins = (32, 32, 32))
            • data.shape = [32, 32, 32]
        • About Pinocchio resolution
          • 1) Box size = 256(Mpc/h), Grid size = 128
            • Total time of 1116 simulations : 1.9hr
          • 2) Box size = 256(Mpc/h), Grid size = 256
            • Total time of 1116 simulations : 8hr
        • Model
          • In the paper..[arXiv : 1908.10590]
          • Input data = 3d histogram
          • Output data = 2parameter(Ω_m, σ_B)
        • Box size : 256, Grid size : 128, Epoch : 100, Learning rate : 0.0001
        • Box size : 256, Grid size : 128, Epoch : 100, Learning rate : 0.0005
        • Box size : 256, Grid size : 128, Epoch : 100, Learning rate : 0.005
        • Next step
          • 256(Mpc/h) → Make 32 * 32 * 32 histogram → So, one voxel includes 8(Mpc/h)'s information
        • Try one voxel includes 2(Mpc/h)'s information by cutting the histogram and see the result.
      • 6
        Hannah's Report - Weak Lensing with Machine Learning
        Speaker: Hannah Jhee (University of Seoul)

        Weak Lensing Mass Reconstruction with cGAN

        • Our goal
          • Our goal is expect the mass of the lens!
          • Compared to KS93(analytic), CNN finds the center better.
          • How about cGAN(conditional GAN)?
          • First try : U-Net + PatchGAN + L1_loss.
        • Generator
          • U-net = Downsampling + (Upsampling + Skip)
          •                   downsize               upsize     concatenate?
          • Weak-lensing map (3, 400, 400) channel(g1, g2, error) →  Concatenate → [FAKE] Reconstruction  map (400x400)
          • (64, 200, 200) → Concatenate → (64, 200, 200)
          • (128, 100, 100) → Concatenate → (128, 100, 100)
          • 25x25
          • U-net = Downsampling + (Upsampling + Skip) → 'tanh' graph
        • Discriminator
        • Loss
          • G = Generator
          • D = Discriminator
          • λ = 101
          • y = true image
          • z = noise vector
          • Batch size 16(can't afford bigger)
          • Learning rate 2e-4
          • Took more than 30 min per epoch.
          • Maybe generator is giving up?
        • Should check loss function
      • 7
        Dr.Sabiu's Report - N-PCF
        Speaker: Dr Cristiano Sabiu (University of Seoul)
    • 8
      Discussion