CLML(Cosmology with Large scale structure using Machine Learning)
- COSMOLOGICAL PARAMETER ESTIMATION FROM LARGE-SCALE STRUCTURE DEEP LEARNING
- Parameter option
- 0.16 <= Ω_m <= 0.46 (step size = 0.01) >> total number = 31
- 0.4 <= σ_B <= 1.1 (step size = 0.02) >> total number = 36
- 1) Parameter space
- Total number of simulation : 1116(=31*36)
- Used 1000 for training, 116 for test)
- 2) Different random seed at each case
- 3d distribution of dark matter halos
- Ω_m = 0.23, σ_B = 0.84
- Ω_m = 0.39, σ_B = 0.56
- Data preparation
- 1) From the Pinocchio
- Get particle position(x, y, z)
- data.shape = [data_length, 3]
- 2) Density field
- np.histogramdd(file_name, bins = (32, 32, 32))
- data.shape = [32, 32, 32]
- About Pinocchio resolution
- 1) Box size = 256(Mpc/h), Grid size = 128
- Total time of 1116 simulations : 1.9hr
- 2) Box size = 256(Mpc/h), Grid size = 256
- Total time of 1116 simulations : 8hr
- Model
- In the paper..[arXiv : 1908.10590]
- Input data = 3d histogram
- Output data = 2parameter(Ω_m, σ_B)
- Box size : 256, Grid size : 128, Epoch : 100, Learning rate : 0.0001
- Box size : 256, Grid size : 128, Epoch : 100, Learning rate : 0.0005
- Box size : 256, Grid size : 128, Epoch : 100, Learning rate : 0.005
- Next step
- 256(Mpc/h) → Make 32 * 32 * 32 histogram → So, one voxel includes 8(Mpc/h)'s information
- Try one voxel includes 2(Mpc/h)'s information by cutting the histogram and see the result.