

Silicon Detector Overview, Application and Outlook

In-Kwon Yoo (Physics, Pusan Nat'l University) On behalf of Luciano Musa (CERN)

How can we look into?

- What probe? ... interaction resolution
- How to detect ... space-time resolution

Principle of Silicon Detector

ALICE Pixel Detector

LHCb VELO

ATLAS Pixel Detector

CMS Strip Tracker IB

CMS Pixel Detector

ALICE Drift Detector

ALICE Strip Detector

ATLAS SCL Barrel

Brief History

J. Kemmer, et al., "Development of 10-micrometer resolution silicon counters for charm signature observation with the ACCMOR spectrometer", Proceedings of Silicon Detectors for High Energy Physics, Nucl. Instr. and Meth. 169 (**<u>1980</u>**) 499.

First use of silicon strips detectors by NA11(CERN SPS) and E706 (FNAL) (A) NA11 (<u>1981</u>): 6 planes (24 x 36mm2): resis)vity 2-3 kΩcm, thickness 280µm, pitch 20µm (B) E706 (<u>1982</u>): 4 planes (3x3 cm2) + 2 planes (5x5cm2)

<u>1990s</u> - LEP, first silicon vertex detectors installed in DELPHI and ALEPH experiments, then OPAL and L3 **<u>1989</u>** - first DELPHI vertex detector, consisting of two layers of single-sided strip detectors

<u>1995</u> – First Hybrid Pixel detector installed in WA97 (CERN, Omega facility) <u>1996/97</u> – First Collider Hybrid Pixel Detector installed in DELPHI (CERN, LEP)

Pixel Detectors at LHC experiments

• 10 yrs later ...

Parameters	ALICE	ATLAS	CMS
Nr. layers	2	3	3
Radial coverage [mm]	<mark>39</mark> - 76	<mark>50</mark> - 120	44 – 102
Nr of pixels	9.8 M	80 M	66 M
Surface [m ²]	0.21	1.7	1
Cell size (rφ x z) [μm²]	50 x 425	50 x 400	100 x 150
Silicon thickness (sens. + ASIC) - x/X ₀ [%]	0.21 + 0.16	0.27 + 0.19	0.30 + 0.19

Technology

- Limited number of sensors producers (~10 world-wide)
- no industrial scale production **→** high cost

- Interconnection technology (micro-bump bonding) limits: ٠
 - pitch (currently ~30µm)
 - input capacitance **>** power

Azom.com

Solder becopy

MAPS Technology

dream to integrate sensor and readout electronics in one chip

Motivation to reduce: cost, power, material budget, assembly and integration complexity

Hybrid Pixel Detector

Several major obstacles to overcome:

• CMOS generally not available on high resistivity silicon (needed as bulk material for the sensor)

Monolithic Pixel Detector

Full CMOS circuitry not possible within the pixel area (only one type of transistor → slow readout)

NMOS

-well

n-well

Exist in many different flavours: CMOS, HV CMOS, DEPFET, SOI The following will cover only CMOS Active Pixel Sensors (CMOS MAPS) = CMOS Active Pixel Sensors (CPS)

MAPS Detectors

2016

Owing to the industrial development of CMOS imaging sensors and the intensive R&D work (IPHC, RAL, CERN)

1999

... several HI experiments have selected CMOS pixel sensors for their inner trackers

2014 - First CPS Detector

STAR HFT 0.16 m² - 356 M pixels

CBM MVD 0.08 m² - 146 M pixel

ALICE ITS Upgrade (and MFT) 10 m² – 12 G pixel

sPHENIX 0.2 m² - 251 M pixel

MAPS Application

STAR HFT - 1st application of MAPS

ALICE New ITS - Closer, Thinner, Smaller

 $1.5 \leq \eta \leq 1.5$

NICA MPD (@JINR)

sPHENIX (BNL)

proton CT (tracking)

CSES – HEPD2

13

ALICE ITS Upgrade Ongoing

- Main detector requirements
 - Higher tracking efficiency and resolution at low p_T
 - ▶ Granularity ↑ Material budget ↓
 - High-statistics, un-triggered data sample
 - ▶ RO rate ↑ Data size ↓ (Online)
- New Silicon Tracker (Inner Tracking System) for HL LHC (installation during 19/20)
- Improve impact parameter resolution by a factor of 3
 - Get closer to IP (1st layer): 39 430 mm > 23 400 mm ($|\eta| \le 1.22$)
 - Material budget X/X0 per layer: ~1.14% ► ~0.3% (inner)
 - Reduce pixel size: 50µm x 425µm ➤ 28µm x 28µm
- Improve tracking efficiency and p_{T} resolution at low p_{T}
 - Increase granularity: 6 layers ► 7 layers w. reduced pixel size
- Fast readout: 1 kHz (1kHz) in PbPb (pp) ► 100 kHz (400kHz) in PbPb (pp)
- Power density < 40mW/cm²
- Fast insertion/removal for yearly maintenance

ALPIDE (ALice Plxel DEtector)

- CMOS Pixel Sensor using 0.18µm CMOS Imaging Process
 - ► High-resistivity (>1k Ω cm) p-type epitaxial layer (25µm) on p-type substrate
 - Small n-well diode ($2\mu m \phi$) ~ low capacitance (fF)
 - ▶ -6V < V_{BB} < 0V to increase depletion zone around n-well diode
 - Deep p-well shields n-well of PMOS transistors
- Full CMOS circuitry within active area
- Pixel: 27 x 29 x 25 μm³
- 130,000 pixels/cm² ~ Total 10m², 12.5 G-pixels
- Spatial resolution ~ 5µm in 3D
- Max. particle rate: 100MHz/cm²
- fake-hit rate ~ 10⁻¹⁰ pixel/event
- Power ~ 300 nW/pixel

ALPIDE

30mm

IB: 50µm thick

OB: 100µm thick

ALPIDE (ALice Plxel DEtector) Performance

Detection Efficiency (%)

Resolution (µm)

- Detection efficiency and Fake-hit rate
- Resolution and Cluster size
 - Non-irradiated and NIEL/TID chips ~ similar
 - Sufficient operational margin after 10 x lifetime NIEL dose
 - Resolution < 5µm at Threshold < 150 e
 - Resolution ~ 6µm at Threshold of 300 e
 - Chip-to-chip fluctuations negligible

MAPS fully depleted

Fully depleted MAPS

Standard Process (+DEEP PWELL)

Modified Process with low-dose n-type implant (+DEEP P

higher reverse CE bias

- Process modification for enhanced depletion, timing performance and radiation tolerance
- NIM A 871C (2017) 90-96 (CERN/Tower)

• Moderation of Vbb ~ -5V

A Process modification for full depletion

Epitaxial P-

Substrate P++

⁵⁵Fe: two X-Ray emission modes:

- 1. K-α: 5.9 keV (1640 e/h), rel. freq.: 89.5% atten. length in Si: 29μm
- K-β: 6.5 keV (1800 e/h), rel. freq.: 10.5% atten. length in Si: 37µm

- 2. Absorption in epitaxial layer: Charge collection partially by diffusion + drift; charge sharing depending on distances
- 3. Absorption in substrate: Charge collection depending on depth and lifetime of charge carrier

DEEP PWEL

modification R&D ongoing

Innovative Ideas & Technology

Technology and Innovation

Stitching available also for 300mm technologies

15 cm

Chipworks: 30µm-thick RF-SOI CMOS

Silicon Genesis: 20 micron thick Si wafer

IDEAL Vertex Tracker (only with Si)

- Detection efficiency \rightarrow 100%
- Material budget (X/X0) \rightarrow 0%
- Power consumption → 0 → no cooling

0.3%

0.3%

0.3%

L0

L1

L2

L0

L1

L2

23mm

31mm

39mm

22

0.05%

0.05%

0.05%

18mm

24mm

30mm

 Even "Starting detection at IP" with 'active' target

A different configuration based on planes transverse to the beam direction

GEANT Simulation

The target is a different material, which is used as support and cold plate for the sensors

Demonstrator will be tested at SPS summer 2018

Pixel Chamber + telescope to measure beam position and emerging particles

Furthermore ...

even 3D Silicon Pixel chamber

Studies on 3D Pixel Chamber Imager for measuring charm and beauty at a fixed target experiment

The heart is a **3D pixel chamber** used as active target

The idea is to have a detector able to provide the image of the proton-nucleus or nucleus-nucleus interaction and track the particles generated in the inelastic collision just starting at the interaction point

The pixel chamber is realized with a stack-up of thin CMOS sensors providing truly 3D (almost) continuous tracking with a precision of few microns for very high rate and multiplicity environment

Nuclear interaction inside a stack-up of N fine pitch pixel sensor

- N ≈ 100 , H $^{\sim}$ 50 μm , L ≈ 0.1 nuclear collision length (*30 mm)
- cm boost: ≈ 14 at 400 GeV/c (SPS), ≈60 at 7TeV (LHC)

$(\sigma_t < 30 \text{ ps})$

ALICE proposal for LS4 (2030) officially submitted by PBM, LM and F. Antinori for ALICE collaboration (Dec. 2018)

ALICE (only with) S(ilicon)

A new experiment based on a "all-silicon" detector

Tracker: ~10 tracking barrel layers (blue, yellow and green) based on CMOS sensors

Hadron ID: TOF with outer silicon layers (orange) Electron ID: pre-shower (outermost blue layer)

~100cm

Extended rapidity coverage: up to 8 rapidity units + FoCal

Scientific Advance is more often driven by the development of a NEW tool than a new concept - Freemab Dyson