Scintillators & PMT

Korea Univ. Lee Jong-won

Detector?

Conversion & & Amplification

Figure 2-5: Linear-focused type

Backup slides

scin·til·la·tion

/ˌsin(t)l'āSHən/ -●

noun

noun: scintillation; plural noun: scintillations

a flash or sparkle of light.

"scintillations of diamond-hard light"

- · the process or state of emitting flashes of light.
- PHYSICS

a small flash of visible or ultraviolet light emitted by fluorescence in a phosphor when struck by a charged particle or high-energy photon.

ASTRONOMY

the twinkling of the stars, caused by the earth's atmosphere diffracting starlight unevenly.

Types of Scintillator

* Inorganic scintillator

- Crystal (Csl, Nal, PbWO₄,...)
- High Z atoms
- High density (3-8 g/cm³)
 - * Short radiation length

* High light yield

- # 10-100 k photon/MeV
- * Good energy resolution
- * Standard : Nal(Tl)
- ns µs decay time

* Expensive

- Hygroscopic (difficult to handle)
- Temp. dep. in Light yield (~%/°C)
- * Strong for Rad. damage
- * EM calorimetery, Medical imaging

* Gas scintillator

- nitrogen + noble gases
- Glass scintillator
 - boron silicates

* Organic scintillator

- * Crystal, Plastic, Liquid type
- * Low Z (C, H) & density (1-2 g/cm³)
 - Insensitive for gamma
- Low light yield
 - # 1-10 k photon/MeV
 - * Standard : antracene

* Fast decay time

- * ~ NS
- Good timing resolution
- * Cheap
- Easy to handle (& Manufacture)
- * Temp. indep. (-60 \sim 20 $^{\circ}$ C)
- * Weak for Rad. damage
- Tracker, TOF, Trigger, Charged veto, Sampling calorimeter (HCAL)

Inorganic Scintillator - Scintillation

State of electrons

- * $E_e > E_{ion}$: Free
- * $E_e > E_g$: Conduction band
- * $E_e < E_g$: form Exciton with hole

Luminescence mechanism

- Free electron
- Electrons in conduction band
- * Electrons in exciton band
- * Activator ion

Electrons in electron trap

- Defects & Impurities
- Reduces LY, delays emission

6/30 ns

1 µs

630 ns

Decay Time

Inorganic Scintillator -Emission/Absortion

Conditions for good scintillator

- Transfarency for own emission light
- # High light yield
- Linear response
- * Fast decay time
- * Easy to handle

Inorganic Scintillator Absorption and Emission spectra & Transmission

Filled Band

Inorganic Scintillator - photon emission timing

Photon emission example : Nal(TI) $h^+ + e^- \rightarrow exciton \rightarrow phonons + photon$ cooled Nal: Nal(TI): N_{photon} $(TI^{+})^{*} \rightarrow TI^{+} + phonons + photon$ $N(t) = N_0 e^{-\frac{t-t_0}{\tau_0}} + (N_1 e^{-\frac{t-t_0}{\tau_1}})$ Singlet states Thermal Triplet states Fast excitation ${}^{3}P_{2}$ P₀ Slow Phonon Nonemission $\Delta S = 1$ radiative Allowed t_0 $\Delta J = 2$ $\Delta S = 1$ Forbidden Forbidden $\Delta S = 1$ $J = 0 \rightarrow 0$ t_r: Rising time, effected by mobility of electron Forbidden

τ₀,**τ**₁ : Decay time const., effected by decay mode

Several activator (TI,Bi) has forbidden state transition -> <u>Slow decay time</u>

¹S₀

Inorganic Scintillator - Light yield

$$LY(n.ph./MeV) = N_{e-h}SQ = \frac{10^{\circ}}{\beta E_g}SQ$$

N_{e-h} :Number of e-h pairs

- E_g : band gab energy ⋇
- β : Ionization energy conv. eff. (2-7) *
- S : Carrier transfer eff. (material dep.) ⋇
- Q: q.e. of luminescent center ⋇ (activator, exciton, ...)

Table 34.4: Properties of several inorganic crystals. Most of the notation is defined in Sec. 6 of this *Review*.

Parameter Units:	: ρ g/cm ³	MP °C	X_0^* cm	R_M^* cm	dE^*/dx MeV/cm	λ_I^* cm	$ au_{ m decay}$ ns	λ_{\max} nm	$n^{ atural}$	$\begin{array}{c} {\rm Relative} \\ {\rm output}^{\dagger} \end{array}$	Hygro- scopic?	$d(LY)/dT$ $\%/^{\circ}C^{\ddagger}$
NaI(Tl)	3.67	651	2.59	4.13	4.8	42.9	245	410	1.85	100	yes	-0.2
BGO	7.13	1050	1.12	2.23	9.0	22.8	300	480	2.15	21	no	-0.9
BaF_2	4.89	1280	2.03	3.10	6.5	30.7	650^{s}	300^s	1.50	36^s	no	-1.9^{s}
							0.9^{f}	220^{f}		4.1^{f}		0.1^{f}
CsI(Tl)	4.51	621	1.86	3.57	5.6	39.3	1220	550	1.79	165	slight	0.4
CsI(Na)	4.51	621	1.86	3.57	5.6	39.3	690	420	1.84	88	yes	0.4
CsI(pure)	4.51	621	1.86	3.57	5.6	39.3	30^s	310	1.95	3.6^{s}	slight	-1.4
							6^f			1.1^{f}		
$PbWO_4$	8.30	1123	0.89	2.00	10.1	20.7	30^s	425^{s}	2.20	0.3^{s}	no	-2.5
							10^{f}	420^{f}		0.077^{f}		
LSO(Ce)	7.40	2050	1.14	2.07	9.6	20.9	40	402	1.82	85	no	-0.2
PbF_2	7.77	824	0.93	2.21	9.4	21.0	-	-	-	Cherenkov	no	-
CeF_3	6.16	1460	1.70	2.41	8.42	23.2	30	340	1.62	7.3	no	0
$LaBr_3(Ce)$	5.29	783	1.88	2.85	6.90	30.4	20	356	1.9	180	yes	0.2
$CeBr_3$	5.23	722	1.96	2.97	6.65	31.5	17	371	1.9	165	yes	-0.1

* Numerical values calculated using formulae in this review.

[‡] Refractive index at the wavelength of the emission maximum.

[†] Relative light output measured for samples of 1.5 X_0 cube with a Tyvek paper wrapping and a full end face coupled to a photodetector. The quantum efficiencies of the photodetector are taken out.

[‡] Variation of light yield with temperature evaluated at the room temperature.

f = fast component, s = slow component

Inorganic Scintillator - Light yield temp. dep.

Organic Scintillator - Scintillation

Förster resonance energy transfer **Energy flows in organic scintillator**

Energy structure of pi-molecular orbital

 $\rightarrow S^* \rightarrow S_0 + \gamma$

Organic Scintillator -Emission/Absortion

Frank-Condon Principle

*****Excitation into higher vibrational state *****De-excitation from lowest vibrational state

Organic Scintillator - Light yield

Ideal Scintillator : Number of photon ~ Deposit energy

Organic Scintillator -Light yield-Birk's law

Organic Scintillator -PSD(Pulse shape discrimination)

Organic Scintillator - Types

Organic scintillator-plastic scintillator

Scintillator	Light Output % Anthracene ¹	Wavelength of Maximum Emission, nm	Decay Constant, ns	Bulk Light Attenuation Length, cm	Refractive Index	H:C Ratio	Loading Element % by weight	Density	Softening Point °C
BC-400	65	423	2.4	250	1.58	1.103		1.023	70
BC-404	68	408	1.8	160	1.58	1.107		1.023	70
BC-408	64	425	2.1	380	1.58	1.104		1.023	70
BC-412	60	434	3.3	400	1.58	1.104		1.023	70
BC-416	38	434	4.0	400	1.58	1.110		1.023	70
BC-418	67	391	1.4	100	1.58	1.100		1.023	70
BC-420	64	391	1.5	110	1.58	1.102		1.023	70
BC-422	55	370	1.6	8	1.58	1.102		1.023	70
BC-422Q	11	370	0.7	< 8	1.58	1.102	Benzephenone,0.5%*	1.023	70
BC-428	36	480	12.5	150	1.58	1.103		1.023	70
BC-430	45	580	16.8	NA	1.58	1.108		1.023	70
BC-440	60	434	3.3	400	1.58	1.104		1.032	99
BC-440M	60	434	3.3	380	1.58	1.104		1.039	100
BC-444	41	428	285	180	1.58	1.109		1.023	70
BC-452	48	424	2.1	150	1.58	1.134	Lead, 2%	1.050	60
BC-480	**	425	-	400	1.58	1.100		1.023	70
BC-482A	QE=.86	494	12.0	300	1.58	1.110		1.023	70
BC-490	55	425	2.3	NA	1.58	1.107		1.023	70
BC-498	65	423	2.4	NA	1.58	1.103		1.023	70

Organic scintillator-liguid scintillator

Scintillator	Light Output % Anthracene ¹	Wavelength of Maximum Emission, nm	Decay Constant, ns	H:C Ratio	Loading Element	Density	Flash Point °C
BC-501A	78	425	3.2 ¹	1.212		0.87	26
BC-505	80	425	2.5	1.331		0.877	48
BC-509	20	425	3.1	.0035	F	1.61	10
BC-517L	39	425	2	2.01		0.86	102
BC-517H	52	425	2	1.89		0.86	81
BC-517P	28	425	2.2	2.05		0.85	115
BC-517S	66	425	2	1.70		0.87	53
BC-519	60	425	4	1.73		0.87	63
BC-521	60	425	4	1.31	Gd (to 1%)	0.89	44
BC-523	65	425	3.7	1.74	Nat. ¹⁰ B (5%)	0.916	-8
BC-523A	65	425	3.7	1.67	Enr. 10B (5%)	0.916	-8
BC-525	55	425	3.8	1.56	Gd (to 1%)	0.88	91
BC-533	51	425	3	1.96		0.80	65

* Anthracene light output = 40-50% of Nal(TI) ¹Fast component; mean decay times of first 3 components = 3.16, 32.3 and 270 ns

Properties of scintillators

Energy resolution

Wavelength of scintillation light ? 수소의 특성X선 에너지 : 13.7 eV

h: 6.625 e-34 Js c: 2.99 e8 m/s $\longrightarrow \lambda = \frac{hc}{E}$ E: 13.7 eV

Redberg Formula

$$\frac{1}{\lambda} = RZ^2(\frac{1}{n_1^2} - \frac{1}{n_2^2})$$

<u>145 nm</u>

(Visible/UV 경계 : 390 nm) (인체적외선 : ~ 9 μm)

>>Scintillation light 는 eV 레벨

Timing resolution

21

PMT

https://www.hamamatsu.com/resources/pdf/etd/PMT_handbook_v3aE.pdf

Cathod material

Work fu	nctions (eV)
Sb	4.55-4.7
Rb	2.261
Cs	1.95
K	2.29
Ga	4.32
As	3.75
In	4.09

- ©: Bialkali Photocathode (Silica Glass)
- D: Bialkali Photocathode
- E: High Temp. Bialkali Photocathode
- (F): Super Bialkali
- G: Ultra Bialkali
- (H): Extended Green Bialkali
- 1: Low Temp. (down to -110 °C) Bialkali Photocathode
- J: Low Temp. (down to -186 °C) Bialkali Photocathode www.Hamamatsu.com

RELATIVE INTENSITY (%)

Window material & dinodes

Windo	w material
Borosilicate glass	300 nm ~
UV-transmitting	185 nm ~
Silica glass	160 nm ~

Select glass type by budget and required performance

Figure 4-5: Spectral transmittance of window materials

ACCELERATING VOLTAGE FOR PRIMARY ELECTRONS (V) Figure 2-7: Secondary emission ratio

PMT gain (G(V)) := Number of electrons in single photon signal $G(V) \sim \delta(V)^n$, n : number of dinode stages H7195 : n = 12, V= ~200V, delta(v)=~3.5 => 3e6

H7195 data sheet

Assembly Size	Dia.60 mm
PMT Tube Size	51 (2) mm
Built-in PMT Type No.	R329-02
Photocathode Area Shape	Round
Photocathode Area Size	Dia.46 mm
Wavelength (Short)	300 nm
Wavelength (Long)	650 nm
Wavelength (Peak)	420 nm
Spectral Response Curve Code	400K
Photocathode Material	Bialkali
Window Material	Borosilicate glass
Dynode Structure	Linear-focused
Dynode Stages	12
	0700 1/
[Max. Rating] Anode to Cathode Voltage	-2700 V
[Max. Rating] Anode to Cathode Voltage [Max. Rating] Average Anode Current	1.23 mA
[Max. Rating] Anode to Cathode Voltage [Max. Rating] Average Anode Current Anode to Cathode Supply Voltage	-2700 V 1.23 mA -2000 V
[Max. Rating] Anode to Cathode Voltage [Max. Rating] Average Anode Current Anode to Cathode Supply Voltage [Cathode] Luminous Sensitivity Typ.	-2700 V 1.23 mA -2000 V 90 μA/Im
[Max. Rating] Anode to Cathode Voltage [Max. Rating] Average Anode Current Anode to Cathode Supply Voltage [Cathode] Luminous Sensitivity Typ. [Cathode] Blue Sensitivity Index (CS 5-58) Typ.	-2700 V 1.23 mA -2000 V 90 μA/Im 10.5
[Max. Rating] Anode to Cathode Voltage [Max. Rating] Average Anode Current Anode to Cathode Supply Voltage [Cathode] Luminous Sensitivity Typ. [Cathode] Blue Sensitivity Index (CS 5-58) Typ. [Anode] Luminous Sensitivity Typ.	-2700 V 1.23 mA -2000 V 90 μA/Im 10.5 270 A/Im
[Max. Rating] Anode to Cathode Voltage [Max. Rating] Average Anode Current Anode to Cathode Supply Voltage [Cathode] Luminous Sensitivity Typ. [Cathode] Blue Sensitivity Index (CS 5-58) Typ. [Anode] Luminous Sensitivity Typ. [Anode] Luminous Sensitivity Typ. [Anode] Gain Typ.	-2700 V 1.23 mA -2000 V 90 μA/lm 10.5 270 A/lm 3.0 x 10 ⁶
[Max. Rating] Anode to Cathode Voltage [Max. Rating] Average Anode Current Anode to Cathode Supply Voltage [Cathode] Luminous Sensitivity Typ. [Cathode] Blue Sensitivity Index (CS 5-58) Typ. [Anode] Luminous Sensitivity Typ. [Anode] Dark Current (after 30min.) Typ.	-2700 V 1.23 mA -2000 V 90 μA/lm 10.5 270 A/lm 3.0 x 10 ⁶ 10 nA
[Max. Rating] Anode to Cathode Voltage [Max. Rating] Average Anode Current Anode to Cathode Supply Voltage [Cathode] Luminous Sensitivity Typ. [Cathode] Blue Sensitivity Index (CS 5-58) Typ. [Anode] Luminous Sensitivity Typ. [Anode] Luminous Sensitivity Typ. [Anode] Cathode] Comparison [Anode] Dark Current (after 30min.) Typ. [Anode] Dark Current (after 30min.) Max.	-2700 V 1.23 mA -2000 V 90 μA/lm 10.5 270 A/lm 3.0 x 10 ⁶ 10 nA 100 nA
[Max. Rating] Anode to Cathode Voltage [Max. Rating] Average Anode Current Anode to Cathode Supply Voltage [Cathode] Luminous Sensitivity Typ. [Cathode] Blue Sensitivity Index (CS 5-58) Typ. [Anode] Luminous Sensitivity Typ. [Anode] Luminous Sensitivity Typ. [Anode] Blue Sensitivity Typ. [Anode] Cathode] Luminous Sensitivity Typ. [Anode] Cathode] Gain Typ. [Anode] Dark Current (after 30min.) Typ. [Anode] Dark Current (after 30min.) Max. [Time Response] Rise Time Typ.	-2700 V 1.23 mA -2000 V 90 μA/lm 10.5 270 A/lm 3.0 x 10 ⁶ 10 nA 100 nA 2.7 ns
[Max. Rating] Anode to Cathode Voltage [Max. Rating] Average Anode Current Anode to Cathode Supply Voltage [Cathode] Luminous Sensitivity Typ. [Cathode] Blue Sensitivity Index (CS 5-58) Typ. [Cathode] Luminous Sensitivity Typ. [Anode] Luminous Sensitivity Typ. [Anode] Gain Typ. [Anode] Gain Typ. [Anode] Dark Current (after 30min.) Typ. [Anode] Dark Current (after 30min.) Max. [Time Response] Rise Time Typ. [Time Response] Transit Time Typ.	-2700 V 1.23 mA -2000 V 90 μA/lm 10.5 270 A/lm 3.0 x 10 ⁶ 10 nA 100 nA 2.7 ns 40 ns
[Max. Rating] Avode to Cathode Voltage [Max. Rating] Average Anode Current Anode to Cathode Supply Voltage [Cathode] Luminous Sensitivity Typ. [Cathode] Blue Sensitivity Index (CS 5-58) Typ. [Cathode] Luminous Sensitivity Typ. [Anode] Cain Typ. [Anode] Gain Typ. [Anode] Dark Current (after 30min.) Typ. [Anode] Dark Current (after 30min.) Max. [Time Response] Rise Time Typ. [Time Response] Transit Time Typ. [Time Response] Transit Time Typ.	-2700 V 1.23 mA -2000 V 90 μA/lm 10.5 270 A/lm 3.0 x 10 ⁶ 10 nA 100 nA 2.7 ns 40 ns 1.1 ns
[Max. Rating] Average Anode Current Anode to Cathode Supply Voltage [Cathode] Luminous Sensitivity Typ. [Cathode] Blue Sensitivity Index (CS 5-58) Typ. [Anode] Cathode] Luminous Sensitivity Typ. [Anode] Cathode] Sensitivity Typ. [Anode] Luminous Sensitivity Typ. [Anode] Cathode] Luminous Sensitivity Typ. [Anode] Cathode] Current (after 30min.) Typ. [Anode] Dark Current (after 30min.) Typ. [Anode] Dark Current (after 30min.) Max. [Time Response] Rise Time Typ. [Time Response] Transit Time Typ. [Time Response] Transit Time Typ. [Anode] Pulse Linearity (2% deviation)	-2700 V 1.23 mA -2000 V 90 μA/lm 10.5 270 A/lm 3.0 x 10 ⁶ 10 nA 100 nA 2.7 ns 40 ns 1.1 ns 80 mA

Detector Assembly

Optics

Relative Light Output

(1) BC-800 (2) BC-802

Application

- 1. Trigger counter
- 2. Tracker
- 3. Calorimeter

Trigger counter

Speed of light in scintillator: ~ 20 cm/ns Coincidence of two detector -> 3 x 3 cm² detection area ->time zitter <200 ps

Beam profiler

CsI L.Y. : 14 ph./MeV Temperatuere : keeps in $\pm 1^{\circ}$ C Placed in vacuum or Air of humidity < 20%

Veto detector for KOTO experiment

Neutron detector construction

Neutron Detector Array (NDA)

Neutron detector array construction - Flow

Light guide gluing (1)

< 0.1 mm로 일치

<u>기존방식</u> : 섬광플라스틱 본체를 수직으로 고정하고 밑에서 라이트가이드를 랩잭으로 올리면 서 접합. 문제점 : 완전히 굳을 때(3일)까지 이동불가. 접합면의 상태확인 어려움. 중량물 (20kg) 조정의 위험성

신규방식 : 섬광플라스틱 본체를 수평대에 고정하고 측면에서 바이스를 이용하여 압력을 가 하여 접착. UV curing glue 사용으로 대기시간 단축 (3-4시간). 접합면의 상태확인용이. 접착 면 조정이 용이.

Light guide gluing (2)

Scintillator Wrapping

PMT gain measurement

0.5

1

1.5

2

2.5

3

3.5 Relative Gain

PMT holder design

Requirements

- Replacable
- No gluing
- Fasten PMT and Light guide
- No light leackage

Decide place

Cosmic ray data

Common waveform

Convert to timing and energy

Cosmic ray measurement

40 Modules / measurement = Same size with 1 layer

Б

ADC

10000 15000 20000 25000 30000 35000 40000

5000

Outputs of all modules were satisfied requirements (>5000).

Cosmic ray data

expected Measured

Resolution (sigma) timing : 139 ps position: 22.85 mm

References

Book <u>http://tesla.phys.columbia.edu:8080/eka/William_R_Leo_Techniques_for_nuclear_and_partic.pdf</u>

Detector <u>http://www-physics.lbl.gov/~spieler/physics_198_notes</u> <u>https://journals.aps.org/prd/abstract/10.1103/PhysRevD.98.030001</u>

Scintillator scintillator.lbl.gov https://www.crystals.saint-gobain.com/products/organic-scintillation-materials

PMT

https://www.hamamatsu.com/jp/en/our-company/business-domain/electron-tube-division/related-documents.html https://www.hamamatsu.com/resources/pdf/etd/PMT_handbook_v3aE.pdf

Photo diodes

https://www.hamamatsu.com/jp/en/our-company/business-domain/solid-state-division/related-documents.html