BASICS OF SIGNAL PROCESSING, TRIGGER AND DAQ

11 JAN 2019 서울시립대 이협우

CAVEAT

- ISOTDAQ(International School of Trigger and Data Acquisition)
- Signal Processing Analog to digital
- Trigger and DAQ Hardware
- Simple Example Energy measurement (Scintillator+PMT)

SIGNALS IN PARTICLE PHYSICS

DAQ

Data acquisition (**DAQ**) is the process of measuring an electrical or physical phenomenon such as voltage, current, temperature, pressure, or sound with a computer. A **DAQ system** consists of sensors, **DAQ** measurement hardware, and a computer with programmable software.

What Is Data Acquisition? - National Instruments www.ni.com/data-acquisition/what-is/

- Gathers data produced by detectors: Readout
- Possibly feeds several trigger levels: HLT
- Forms complete events: Event Building
- Stores event data: Data Logging
- Provides Run Control, Configuration and Monitoring

TRIGGER

- Dictionary : to make a piece of equipment, etc. start working
- Wikipedia Trigger (particle physics) : In particle physics, a trigger is a system that uses criteria to rapidly decide which events in a particle detector to keep when only a small fraction of the total can be recorded. Trigger systems are necessary due to real-world limitations in computing power, data storage capacity and rates. Since experiments are typically searching for "interesting" events (such as decays of rare particles) that occur at a relatively low rate, trigger systems are used to identify the events that should be recorded for later analysis...

TRIGGER AND DAQ

- Self Trigger, External Trigger
- (Non-)Periodic Trigger
- Latency
- Dead time

ADC

- Analog to Digital Converter
- Oscilloscope, Digital audio encoding...
- Resolution, Sampling Rate, Range
- Flash, Successive approximation, Pipeline
- Charge ADCs (QDC)
- Peak sensing ADC

Digital

b

DISCRIMINATOR

SIMPLE EXAMPLE – BUSY LOGIC

SIMPLE EXAMPLE – BUSY LOGIC

14

SIMPLE EXAMPLE – BUSY LOGIC

WHAT ELSE? - TDC

- Time to Digital Converter
- Digital counters
 - Good and cheap time references available as crystal oscillators
 - Limited resolution: $\sim 1 \, \text{ns}$
- Charge integration (start-stop)
 - Limited dynamic range
 - High resolution: \sim 1-100 ps

16

WHAT ELSE? – PREAMP, SHAPER

- Charge sensitive preamp
- Pulse shaper

THE FRONT END ELECTRONICS

- Electronics directly connected to the detector (sensitive element)
- Acquire an electrical signal from the detector (usually a short, small current pulse)
- Tailor the response of the system to optimize
 - the minimum detectable signal
 - energy measurement (charge deposit)
 - event rate
 - time of arrival
 - insensitivity to sensor pulse shape
- Digitize the signal and store it for further treatment

SCALING UP - ADDING MORE CHANNELS

Single or few channels

ASIC

 \sim 10s, \sim 100s channels

ASIC

Application Specific Integrated Circuit 주문형반도체

(SEMI?) ASIC

 Weeroc : Special ASICs for particle detector applications

	SiPM	MA-PMT	РМТ	APD	Pin diode	Silicon strips	RPCs	Micromegas GEMS
Maroc 3A	×	~	~					
Catiroc 1	×	×	~					
Spaciroc 3	×	~	~					
Citiroc 1A	~							
Petiroc 2A	~						×	
Photoroc 1A	×	~	~					
Triroc 1A	~							
Skiroc 2A				~	~	~		
Hardroc 3B	×	×					~	
Gemroc 1				×	×	×		*
,	 Optimized for - × Compatibility - × Compatibility (not tested) 							

COMMUNICATION - BUS

- A bus connects two or more devices and allows the to communicate
- The bus is shared between all devices on the bus \rightarrow arbitration is required
- Devices can be masters or slaves (some can be both)
- Devices can be uniquely identified ("addressed") on the bus

COMMUNICATION - BUS

- Famous examples: PCI, USB, VME, SCSI
- older standards: CAMAC, ISA
- upcoming: ATCA
- many more: FireWire, I2C, Profibus, etc...
- Buses can be
- local: PCI
- external peripherals: USB
- in crates: VME, compactPCI, ATCA
- long distance: CAN, Profibus
- Theoretically ~ 16 MB/s can be achieved
- Better performance by using block-transfers
- Easy to add new device, boards with standard interface

COMMUNICATION - NETWORK

- All devices are equal
 - Devices communicate directly with each other via messages
 - No arbitration, simultaneous communications
- Examples: Telephone, Ethernet, Infiniband, ...
- In switched networks, switches move messages between sources and destinations
 - Find the right path
- Handle congestions (two messages with the same destination at the same time)
 - The key is buffering

24 (

MULTI LEVEL TRIGGER - CMS

25

ASIC, FPGA, GPU, CPU

	ASIC	FPGA	GPU	CPU
Front-end	×	(🖌)		
L1	×	×	?	
HLT			(✔)	×
Offline/Grid		\$	\$	×

FPGA

- FPGAs have been around in trigger systems for a while
- Latest large FPGAs give a huge amount of flexibility and are used in the LHC experiments
- Easily upgrade trigger systems since the logic (algorithms) do not need to be fixed when the board is produced
- Can change the algorithms running in hardware, in light of better detector understanding, even physics discoveries
- Deep learning?

인공지능 칩 강자는 누구? GPU vs FPGA vs ASIC (1)

딥러닝 빠른 연산처리와 데이터센터 에너지 효율, 하드웨어가 '핵심'

이나리 기자 + 승인 2017,06,13 16:14:02 + 수정 2017,06,13 17:25