고에너지물리 입자검출기 학교

윤인석 (SNU)

2019 / 01/10

젬검출기의원리와특성

1

학습목표

- GEM 검출기의 동작 원리와 특성을 이해한다.
- 이를 위해 가스 검출기 이론을 넓고 얇게 소개한다.
- ★ GEM 포일, 검출기를 운영하는 실무적인 요령은 다루지 않음. 시간 관계상, GEM 응용 검출기도 다루지 않음.

Contents

- Introduction to GEM detector
- Principles of gaseous detectors
- Interaction of charged particles with matters
- Drift and diffusion of charges in gas
- Charge multiplication
- Signal formation by induction
- Characteristics of GEM detector
- Charge multiplication principle
- Rate capability
- Gain, gain uniformity and discharge Prob.
- Suppression of positive ion backflow
- Robustness to radiation
- Resolutions
- Gain shift due to charging up.

Further readings

• Merlin, Jeremie Alexandre, CERN-THESIS-2016-041,

<https://cds.cern.ch/record/2155685>

: 젬 검출기 뿐 아니라 가스 검출기 전반에 대한 포괄적인 내용이 쉽고 친절하게 담겨 있음. 분 량이 많아 보이나, 금방 읽을 수 있음.

• Fabio Sauli, The gas electron multiplier (GEM): Operating principles and applications, <https://doi.org/10.1016/j.nima.2015.07.060>

: 젬 검출기의 중요한 특정이 밀도 있게 담겨 있음.

• CMS Collaboration, CMS-TDR-013,

<https://cds.cern.ch/record/2021453/?ln=en>

: R&D 과정이 자세하게 담겨 있음. 큰 시스템과 연동하는데 필요한 정보도 담겨 있음. 큰 프로 젝트를 진행하는 관리적인 요소도 담겨 있음. 분량 압박.

• Fabio Sauli, Gaseous Radiation Detectors: Fundamentals and Applications,

<https://doi.org/10.1017/CBO9781107337701>

: 가스 검출기에 대한 아주 많은 정보가 담겨 있음. 분량 압박.

Cu Polyimide($\varepsilon_r = 3.4$)

- Gaseous detector. Electron multiplication via GEM.
- Thickness of Cu: 5 μ m, polyimide: 50 μ m Usually, outer (inner) hole diameter: 70 (50) μ m, pitch: $140 \ \mu m$
- Electric field is squeezed into hole \sim 15 kV cm^{-1} Avalanche occurs in hole.

- Manufacturing GEM foils
- Photolithography
- KCMS main contribution towards CMS Phase-2 upgrade: supplying large size GEM foils.

- Tracker
- TPC
- Imaging

2 Principles – Interactions of charged ptl. with matters

- Charged ptl. penetrating matters lose energy via excitation, *ionization*, Bremsstrahlung, Chrenkov.
	- For ordinary gaseous detectors, the ionization is key process.
	- Electron by ionization \rightarrow charge multiplication by avalanche \rightarrow detectable signal via induction.
	- Photon from excitation usually too small to be detected.
- Bethe-Bloch equation: energy loss processes due to multiple Coulomb interaction.

$$
\left(\frac{-dE}{dX}\right) = K z^2 \frac{Z}{A} \frac{1}{\beta^2} \Big[\frac{1}{2} \ln \frac{2m_e c^2 \beta^2 \gamma^2 T_{max}}{I^2} - \beta^2 - \frac{\delta}{2} - \frac{C}{Z} \Big]
$$

\n
$$
K = \frac{4\pi e^4}{c^2 m_e} N_A = 0.31 \text{ MeV cm}^2/g
$$

\nStopping
\npower

2 Principles – Interactions of charged ptl. with matters

2 Principles – Interactions of charged ptl. with matters

2 Principles – Drift and diffusion of ions in gas

- Primary e^- produced by ionization should be transported to avalanche region (=drift).
- Diffusion occurs during drift.
- Drift and diffusion of ions can be described by simple formula
- Drift of ions in electric field.

 $\mu = \frac{w^+}{E}$

2 Principles – Drift and diffusion of ions in gas

• Thermal diffusion \sim Gaussian distribution

$$
\frac{dN}{N} = \frac{1}{\sqrt{4\pi Dt}} e^{-\frac{x^2}{4Dt}} dx \qquad \sigma_x = \sqrt{2Dt}
$$

• Nernst-Townsend relation

$$
\frac{D}{\mu} = \frac{kT}{e}
$$

• Ions migrating over a length x under field E diffuses

$$
\sigma_x = \sqrt{\frac{2kT}{e}\frac{x}{E}}
$$

2 Principles – Drift and diffusion of electrons in gas

- Drift and diffusion of electron
- Much more complicated… due to small mass, electron capture, ETC.

2 Principles – Drift and diffusion of electrons in gas

2 Principles – Drift and diffusion of electrons in gas

• Drift of electron in magnetic fields.

$$
\vec{w} = \frac{e}{m} \frac{\tau}{1 + \omega^2 \tau^2} \left[\vec{E} + \omega \tau \frac{\vec{E} \times \vec{B}}{B} + \omega^2 \tau^2 \frac{\vec{B} (\vec{E} \cdot \vec{B})}{B^2} \right]
$$

 $\omega = EB/m$ is the Larmor frequency τ mean collisional time

- It's important to understand the effect of magnetic field. In many cases, detectors are installed inside magnetic field.

• Two limiting case

 $\vec{E} \perp \vec{B}$ tan $\theta_B = \omega \tau$ \vec{E} / \vec{B} $w_B = w_0$ $\sigma_L = \sigma_0$ $w_B = \frac{E}{B} \frac{\omega \tau}{\sqrt{1 + \omega^2 \tau^2}}$ $\sigma_T = \frac{\sigma_0}{\sqrt{1 + \omega^2 \tau^2}}$ Improve position resolution of TPC!!

2 Principles – Charge multiplication

- Electrons in strong electric field can be multiplied by ionization.
- $\alpha = \lambda^{-1}$: first Townsend coefficient, number of ion pair produced per unit length of drift.
	- $\alpha = N\sigma$, N: number of molecules per unit volume.
	- \Rightarrow That's why gain of gas detectors depend on P/T.
- $dn = n\alpha dx$ $n = n_0 e^{\alpha x}$ $M = e^{\int_{x_1}^{x_2} \alpha(x) dx}$

2 Principles – Charge multiplication

- Streamer formation
- Field distortion by space charge and secondary avalanche by UV
- Raether's limit: $\alpha x < 20$, gain \sim 10⁸ However due to statistical fluctuation, usual maximum gain $< 10^6$.
- Suppressing secondary avalanche by UV.
- Necessity of quenching gas

2 Principles –Signal formation by induction

- Signal is induced by the motion of charges.
- Common misunderstanding: when charges touch readout strip, current is formed. Wrong!! touching readout strip means the end of signal!!
- Shockley–Ramo theorem: $i = qE_i \cdot \vec{v}$
- $E_{\boldsymbol{i}}$: the electric field at the charge's instantaneous position, under the following conditions: charge removed, given electrode raised to unit potential, and all other conductors grounded. \vec{v} : drift velocity of charges
- q: charges

3 Characteristic of GEM – Charge multiplication principle

- Charge multiplication in micro holes.
- Each micro holes work as "independent proportional counter" screened from each others.

Garfield / Magboltz simulation Dark brown: ion, light brown: e^- Dot where ionization occurs

3 Characteristic of GEM – Rate capability

- 10-100 times better rate capability than MWPC.
- Reason of gain drop of MWPC at high flux: space charge due to slow ions.
- High density of micro holes, GEM detectors have very high rate capability.

3 Characteristic of GEM – Gain and discharge

- Effective gain $=$ collection Effi. \times "real gas gain" \times extraction Effi.
- Collection Effi. and extraction Effi. are function of hole geometry, and field strength
- Thanks to step-by-step multiplication, high gain is achievable wo/ discharge.

3 Characteristic of GEM – Robustness to radiation

- Classical aging.
- Quenching gas can form insulating polymer on electrode wire.
- Charge collection hindered, space charge accumulate, field distorted, dark current increases and discharge occurs.
- GEM is very strong to radiation.
- Be very careful with outgassing and leak!!

17.5

 12.5

15

22.5

25

20

3 Characteristic of GEM – Suppression of ions backflow

- GEM foil works as screen of ions; Suppression of positive ions backflow.
- Space charge due to ion distorts field line for drift. Long time is needed to extract slow ions from drift region.
	- ⇒ Reason of extremely low rate capability of TPC.
- \Rightarrow Good property for TPC.

Indust

rackda

Lehr Sov

GTA

U.G

di si

W.

callsode

3 Characteristic of GEM – Resolutions

- Energy resolution~17% comparable to proportional counter.
- Time resolution~7ns $Ar: CO₂ = 70\% : 30\%$ \sim 4.5ns Ar: CO_2 : CF_4 = 45%: 15%: 40%
- Spatial resolution: 70-80 μ m.
- Multitrack resolution~ $O(100\mu m)$.

250

200

150 **COUNTS** 100

50

Ar-DME 80-20 AF-DME 80-20
 ΔV_{GEM} = 520 V (Gain ~5000)

^{ss}Fe

3 Characteristic of GEM – Disadvantages

- Gain shift due to charging up.
- Charges stick to PI layer distort fields and shift gain.
- Hole geometry is key factor.
- Combined with "the natural gain shift" of gaseous detector, gain shift of GEM detector is significant.
- High material budget.
- Due to multiple Cu layers
- R&D ongoing to produce GEM foil with Al or thin Cr instead of Cu.

