Particle Interaction

Many good references available

- "Passage of Particles through Matter" section of the Particle Data Book
- Books by Leo and Knoll
- W. Riegler for the CERN 2008 Summer Student Lecture & A. Weber in his lecture on particle interactions for Oxford graduate students in 2004

경북대학교 물리학과 김홍주

hongjooknu@gmail.com

고에너지 검출기학교, 2019년 1월 9-11일

1) Electromagnetic Interaction of Charge Particles

Interaction with the atomic electrons. The incoming particle looses energy and the atoms are <u>excited</u> or <u>ionized.</u> Interaction with the atomic nucleus. The particle is deflected (scattered) resulting in <u>multiple scattering</u> of the particle in the material. During these scattering events a <u>Bremsstrahlung</u> photons can be emitted. In case the particle's velocity is larger than the velocity of light in the medium, the resulting EM shockwave manifests itself as <u>Cherenkov Radiation</u>. When the particle crosses the boundary between two media, there is a probability of the order of 1% to produce an X ray photon, called <u>Transition radiation</u>.

Bethe-Bloch overview

Energy loss by Ionisation only \rightarrow <u>Bethe - Bloch formula</u> $\left\langle \frac{dE}{dx} \right\rangle = -4\pi N_A r_e^2 m_e c^2 z^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \ln \frac{2m_e c^2 \gamma^2 \beta^2}{I^2} T^{\max} - \beta^2 - \frac{\delta}{2} \right]$

- dE/dx in [MeV g⁻¹ cm²]
- valid for "heavy" particles (m≥m_µ).

 First approximation: medium simply characterized by Z/A ~ electron density

Cosmis rays: dE/dx α Z²

Discovery of muon and pion

에멀젼, 액체아르곤 (Emulsion & Liquid Argon Precision Detectors)

Charge Measurements: 2 layers of SCD

Park et al, Nucl. Instr. and Meth. A , 570, 286-291, 2007

실리콘검출기 (Semiconductor detector) - Vertex & Track measurements

Speaker: Prof. Inkwon Yoo (부산대학교)

Application in Particle ID

Bragg peak

- Monoenergetic proton beam loses energy more rapidly as it slows down; gives sharp Bragg peak in ionization versus depth (used in proton radiation therapy)
- Using a range of proton energies allows a varied profile versus depth
- Photon beam (x-rays) deposits most energy near entrance into tissue

Multiple Scattering

 Particles don't only loose energy but also they also change direction. Average scattering angle is roughly Gaussian for small deflection angles with

$$\theta_0 = \frac{13.6 \text{ MeV}}{\beta cp} z \sqrt{\frac{x}{X_0}} \left[1 + 0.038 \ln\left(\frac{x}{X_0}\right) \right]$$

 $X_0 \equiv$ radiation length

- Multiple scattering will make worse resolution for charged particle tracking.
- Energy loss distribution is not Gaussian around mean.
 In rare cases a lot of energy is transferred to a single electron :

 δ -Rays

- Energy loss distribution is not Gaussian around mean.
- In rare cases a lot of energy is transferred to a single electron

- If one excludes $\delta\text{-rays},$ the average energy loss changes
- Equivalent of changing E_{max}

Landau in thin layers

Light mass particle energy Loss

- At very low βγ, large energy loss due to atomic effects
- For large (and relevant) range of relativistic βγ, energy loss is small (minimium ionizing particle – "mip")
- Ultra-relativistic particles lose energy mostly via gamma radiation

¹²

Bremsstrahlung

Energy loss by Bremsstrahlung

Radiation of real photons in the Coulomb field of the nuclei of the absorber medium

$$-\frac{dE}{dx} = 4\alpha N_A \frac{Z^2}{A} z^2 \left(\frac{1}{4\pi\varepsilon_0} \frac{e^2}{mc^2}\right)^2 E \ln \frac{183}{Z^{\frac{1}{3}}} \propto \frac{E}{m^2}$$

Nucleus

Effect plays a role only for e^{\pm} and ultra-relativistic m (>1000 GeV)

For electrons:

ngth [g/cm²]

(divide by specific density to get X_0 in cm)

Electrons

 $10 \, \mathrm{GeV}$

- Electrons are different → light
 - Bremsstrahlung

2) y and X-ray interaction

- γ and X-ray are neutral : No direct interaction with target.
- Photon interaction by
 - Photo-electric effect
 - Compton scattering
 - Pair production

Interaction of photons

In order to be detected, a photon has to create charged particles and / or transfer energy to charged particles

Photo-electric effect:

Only possible in the close neighborhood of a third collision partner - photo effect releases mainly electrons from the K-shell.

Cross section shows strong modulation if $E_{\gamma} \approx E_{shell}$

$$\sigma_{photo}^{K} = \left(\frac{32}{\varepsilon^{7}}\right)^{\frac{1}{2}} \alpha^{4} Z^{5} \sigma_{Th}^{e} \qquad \varepsilon = \frac{E_{\gamma}}{m_{e}c^{2}} \qquad \sigma_{Th}^{e} = \frac{8}{3}\pi r_{e}^{2} \quad \text{(Thomson)}$$

$$At \text{ high energies}$$

$$\sigma_{photo}^{K} = 4\pi r_{e}^{2} \alpha^{4} Z^{5} \frac{1}{\varepsilon} \qquad \sigma_{photo} \propto Z^{5}$$

X-rays: A: 0.6 keV (N→M) B: 4.4 keV (M→L) C: 29 keV (L→K)

 $\lambda_1 < \lambda_2 < \lambda_3 < \lambda_2$

Characteristic

 $\sigma_c^{atomic} = Z \cdot \sigma_c^e$

Detector Response with ¹³⁷Cs γ source

HPGe

Liquid scintillator (C,H)

Speaker: Dr Jongwon Lee (고려대학교)

Only possible in the Coulomb field of a nucleus (or an electron) if

 $E_{\gamma} \ge 2m_e c^2$

Cross-section (high energy approximation) $\sigma_{pair} \approx 4\alpha r_e^2 Z^2 \left(\frac{7}{9} \ln \frac{183}{Z^{\frac{1}{3}}}\right) \quad \text{independent of energy !} \qquad \gamma + e^- \rightarrow e^+ e^- + e^ \approx \frac{7}{9} \frac{A}{N_A} \frac{1}{X_0}$ $\approx \frac{A}{N_A} \frac{1}{\lambda_{pair}} \qquad \text{Energy sharing}$ $\text{between } e^+ \text{ and } e^-$ becomes $\lambda_{pair} = \frac{9}{7} X_0 \qquad \text{asymmetric at}$ high energies.

Energy Loss of γ

Interactions of photons with water and lead

In summary: $I_{\gamma} = I_0 e^{-\mu x}$ μ : mass attenuation coefficient $\mu_i = \frac{N_A}{A} \sigma_i \left[cm^2 / g \right] \quad \mu = \mu_{photo} + \mu_{Compton} + \mu_{pair} + ...$

Reminder: basic electromagnetic interactions

3) Cherenkov Radiation

• Wave front comes out at certain angle

체렌코프 검출기와 활용 (Cherenkov detector and its applications) - RICH, Water Cherenkov Speaker: Prof. Youngjoon Kwon (연세대학교)

Cherenkov Radiation

• How many Cherenkov photons are detected?

$$N_{\gamma} = L \frac{\alpha z^2}{r_e m_e c^2} \int \mathcal{E}(E) \sin^2 \theta_c(E) dE$$

$$=L\frac{\alpha z^{2}}{r_{e}m_{e}c^{2}}\int \varepsilon(E)\left(1-\frac{1}{\beta^{2}n^{2}}\right)dE$$

$$\approx LN_{0}\left(1-\frac{1}{\beta^{2}\langle n^{2}\rangle}\right)$$

with $\varepsilon(E) =$ Efficiency to detect photons of energy E L = radiator length $r_e =$ electron radius

Cerenkov Radiation in Popular Culture…

- Picture of Cerenkov radiation from the core of a water-cooled nuclear reactor.
- given off by fast electrons emerging from fission reactions

CREAM Cosmic ray experimenet

New addition for Flight 3: CherCam

More powerful backscatter rejection for better charge determination

Transition Radiation

- Transition radiation is closely related to Cerenkov radiation.
- Occurs when a charged particle crosses the boundary between materials of different refractive indices.

4) Transition radiation

by B. Dolgoshein (NIM A 326 (1993) 434))

TR is electromagnetic radiation emitted when a charged particle traverses a medium with a discontinuous refractive index, e.g. the boundaries between vacuum and a dielectric layer.

A (too) simple picture

A correct relativistic treatment shows that...

(G. Garibian, Sov. Phys. JETP63 (1958) 1079)

• Radiated energy per medium/vacuum boundary

$$W = \frac{1}{3} \alpha \hbar \omega_p \gamma \qquad W \propto \gamma \longrightarrow \qquad \text{only high energetic } e^{\pm} \text{ emit TR of detectable}$$

intensity.
$$\rightarrow \text{ particle ID}$$
$$\omega_p = \sqrt{\frac{N_e e^2}{\varepsilon_0 m_e}} \qquad \begin{pmatrix} \text{plasma} \\ \text{frequency} \end{pmatrix} \quad \hbar \omega_p \approx 20 \text{eV (plastic radiators)}$$

electron

TR is also called sub-threshold Cherenkov radiation

TRD for CREAM experiment

From S.P. Wakely presentation @ COSPAR 2006

Summary of particle-matter electromagnetic interactions

5) Neutron interaction with matter

- 1) Introduction
- 2) Elastic scattering of neutrons
- 3) Inelastic scattering of neutrons
- 4) Neutron capture
- 6) Spallation reactions, hadron shower

Introduction

Neutron has not electric charge \rightarrow **interaction only by strong nuclear interaction**

Magnetic moment of neutron → interaction by electromagnetic interaction, mostly negligible influence

Different energy ranges of neutrons:

Ultracold: $E < 10^{-6} eV$ Cold and very cold: $E = (10^{-6} eV - 0,0005 eV)$ Thermal neutrons – (0,002 eV - 0,5 eV) neutrons are in thermal equilibrium with neighborhood, Maxwell distribution of velocities, for 20°C is the most probable velocity $v = 2200 m/s \rightarrow E = 0,0253 eV$

Epithermál neutrons and resonance neutrons: E = (0,005 eV – 1000 eV)

Slow neutrons:E < 0,3 eVFast neutrons:E = (0,3 eV - 20 MeV)Neutrons with high energies:E = (20 MeV - 100 MeV)Relativistic neutrons:0,1 - 10 GeVUltrarelativistic neutrons:E > 10 GeV

Elastic scattering of neutrons

Maximal transferred energy (nonrelativistic case of head-head collision):

MCL:
$$p_{n0} = p_A - p_n$$
 ECL: $E_{n0KIN} = E_{AKIN} + E_{nKIN} \Rightarrow p_{n0}^2/2m_n = p_A^2/2m_A + p_n^2/2m_n$
MCL: $p_n^2 = p_A^2 - 2p_A p_{n0} + p_{n0}^2 \Rightarrow m_A p_n^2 = m_A p_A^2 - 2m_A p_A p_{n0} + m_A p_{n0}^2$
ECL: $m_A p_n^2 = -m_n p_A^2 + m_A p_{n0}^2$

Recoil Energy distribution of Elastic scattering of neutrons

$$P(E_A) = \frac{1}{4} \frac{(1+A)^2}{A} \frac{1}{E_{n0}}$$

Energy distribution of reflected protons for $E_{n0} < 10 \text{ MeV}$

14 MeV neutron recoil with H

Inelastic neutron scattering

Competitive process to elastic scattering on nuclei heavier than proton

Part of energy is transformed to excitation \rightarrow accuracy of energy determination is given by their fate

Its proportion increases with increasing energy

Nuclear reactions of neutrons

Neutron capture: (n,γ)

High values of cross sections for low energy neutrons

Cross section of reaction ¹³⁹La(n, γ)¹⁴⁰La

 $^{157}Gd(n,\gamma)$ – for thermal neutrons cross section is biggest $\sigma \sim 255\ 000$ barn Total 8 MeV gamma+conversion electrons

Reactions (n,d), (n,t), (n,α) ...

Reactions used for detection of low energy neutrons :

(two particle decay of compound nucleus at rest, nonrelativistic approximation)

$$E_{N} + E_{P} = Q$$

$$m_{N}v_{N} = m_{P}v_{P} \rightarrow \qquad \sqrt{2m_{N}E_{N}} = \sqrt{2m_{P}E_{P}} \rightarrow E_{N} = \frac{m_{P}}{m_{N}}E_{P} \quad \sum \quad E_{P} = \frac{m_{N}}{m_{P} + m_{N}}Q$$

¹⁰B(n,a)⁷Li Q = 2,792 and 2,310 MeV, $E_{\alpha} = MeV$, $E_{Li} = MeV \sigma_{th} = 3840 \text{ b } 1/\text{v} \text{ up to } 1 \text{ keV}$ ⁶Li(n,a)³H Q = 4,78 MeV, $E_{\alpha} = 2,05 \text{ MeV}$, $E_{H} = 2,73 \text{ MeV} \sigma_{th} = 940 \text{ b } 1/\text{v} \text{ up to } 10 \text{ keV}$ ³He(n,p)³H Q = 0,764 MeV, $E_{p} = 0,573 \text{ MeV}$, $E_{H} = 0,191 \text{ MeV} \sigma_{th} = 5330 \text{ b } 1/\text{v} \text{ up to } 2 \text{ keV}$

Induced fission: (n,f)

Induced by low energy neutrons (thermal): ²³³U, ²³⁵U, ²³⁹Pu Exothermic with very high Q ~ 200 MeV Induced by fast neutrons: ²³⁸U, ²³⁷Np, ²³²Th Induced by "relativistic" neutrons: ²⁰⁸Pb

Spallation reactions, hadron shower

Interaction of realativistic and ultrarelativistic neutrons

Same behavior as for protons and nuclei

6) Electromagnetic and Hadronic Showers

전자기열량계와 하드론열량계 (EM & Hadron Calorimeters) Speaker: Prof. Sehwook Lee (경북대학교)

Electromagnetic Showers

- High energy electron produces photon through bremsstrahlung
- Photon produces e⁺ e⁻ through pair production

Example of E&M Shower at High Energy

Primary photon can convert into e⁺ e⁻-pair; electron and positron generate bremsstrahlung photons which produce pairs in their turns. The shower develops until the energies of photons become less than necessary to create pairs.

Electron shower in a cloud chamber with lead absorbers

Hadronic Showers

- High-energy hadrons give hadronic showers.
- Hadron interacts with nucleus by the strong interaction.
- Number of particles produced in each collision $\propto \ln(E)$
- Length scale :

- σ_{I} is nuclear cross-section for strong interaction
- $\lambda_{|}$ = hadronic interaction length

Hardronic shower

'ELEMENTARY PROCESS' IN A HADRON SHOWER

Fig. 3.6 'Elementary physical process' in a hadron shower.

e/p separation

Particle energy loss in matter

Cosmic Ray Energetics And Mass (CREAM)

- To extend direct measurements of elemental spectra to the highest energy practical with balloon experiments
- To have enough overlap with ground based indirect measurements To understand whether/how the "knee" is related to the acceleration, propagation and confinement

Timing Charge Detector

Cherenkov Camera

Silicon Charge Detector

> Carbon Targets

Calorimeter

Support Instrument Package

$B \rightarrow K^* \gamma$ Candidate at Belle

We observed a dimuon event

J/ψ→μμ
- M(μμ) = 3.1 GeV
-both muons tracks clearly evident in magnet return yoke

consistent with

 $B \to J \,/\, \Psi \, K_{\scriptscriptstyle L}$

although there were no hits in the RPCs