CPLUOS Astrophysics team meeting

Asia/Seoul
물리학과

물리학과

Zoom Meeting https://uos-ac-kr.zoom.us/j/8264902652 Meeting ID: 826 490 2652
Description

https://uos-ac-kr.zoom.us/j/8264902652

    • 16:30 17:45
      COSMOLOGY
      • 16:30
        Dr.Sangnam Park's Report - FDM_Offset 15m
        Speaker: Sangnam Park
      • 16:45
        Hyeonmo's report - CDM Halo Evolution for Gadget2 Simulation 15m
        Speaker: Hyeonmo Koo (University of Seoul)
        • Halo collision simulation
          • Previous : M[4π x 10^7M_s] = 20~50, v[28.1km/s] = 18 ~ 25
          • Next : M[4π x 10^7M_s] = 50, v[28.1km/s] = 50(18 ~ 25)/M
        • Initial velocity[km/s] - Decreased velocity[km/s] graph
          • Dashed : Newtonian result ; right upper
          • Dotted : Recent result(+PBC) ; left lower
        • t[Gadget unit] - r_(1/2) Evolution[kpc] graph
          • t = 0 : All simulations of 30 halo samples are initiated from here!!
          • t = 0 ~ (about) t = 0.07 : Initiate from all times before one period of oscillation
      • 17:00
        Young's report. FoF and MST algorithm 15m
        Speaker: Young Ju
      • 17:15
        CHOA(Cosmology of High-Order Statistics) 15m
        Speaker: Se Yeon Hwang
        • Outline
          • Chi square
          • Joint chi square
          • Introduce new simulation, Abacus
        • Full range & cut range
          • Multiplied rescaling factor to 2-point correlation function
          • Ordinary(Rescaling factor = 1.0)
            • Range : Full range(35 < r < 135)
            • No wiggle : 8.75
            • With wiggle : 7.97
          • Rescaling factor = 0.7
            • Range : Full range(35 < r < 135)
            • No wiggle : 2.94
            • With wiggle : 2.05
          • Rescaling factor = 0.8 and 0.9
            • Range : Cut range(60 < r < 135)
            • No wiggle : 3.31
            • With wiggle : 1.89
        • Full range & cut range
          • Multiplied rescaling factor to 3-point correlation function
          • Ordinary(Rescaling factor = 1.0)
            • Range : Full range(35 < r < 135)
            • No wiggle : 6.17
            • With wiggle : 4.43
          • Rescaling factor = 0.75 and 0.7
            • Range : Full range(35 < r < 135)
            • No wiggle : 2.91
            • With wiggle : 1.49
          • Rescaling factor = 0.8 and 0.65
            • Range : Cut range(60 < r < 135)
            • No wiggle : 3.27
            • With wiggle : 1.57
        • Full range & cut range
          • Multiplied rescaling factor to 5-point correlation function
          • Ordinary(Rescaling factor = 1.0)
            • Range : Full range(35 < r < 135)
            • No wiggle : 8.04
            • With wiggle : 6.92
          • Rescaling factor = 0.35 and 0.35
            • Range : Full range(35 < r < 135)
            • No wiggle : 0.23
            • With wiggle : 0.08
          • Rescaling factor = 0.35 and 0.3
            • Range : Cut range(60 < r < 135)
            • No wiggle : 0.23
            • With wiggle : 0.07
        • Calculated joint chi square using combined 2pcf + 3pcf covariance matrix
          • Full range(35 < r < 135), nw chi : 7.37, ww chi : 6.63
          • Cut range(60 < r < 135), nw chi : 3.95, ww chi : 3.01
        • Compare with different simulation : Abacus
          • Pinocchio : Lagrangian perturbation theory based simulation
          • Abacus : N-body simulation
          • Box size = 1100(Mpc/h)
            • (Parameter, Value)
              • (ombh^2, 0.02222)
              • (omcdmh^2, 0.1199)
              • (omh^2, 0.14212)
      • 17:30
        Dr.Sabiu's Report - Higher Order Statistics 15m
        Speaker: Dr Cristiano Sabiu (University of Seoul)
        • Estimating the General N-point Statistics
          • Use tree-code to find all data points close to 1
          • Do this for each data point
          • Creating a huge database of pairs
          • It's quite fast to create, but memory intensive
          • Query for N-point
            • All 'pairs' (w/ distances) are precomputed.
            • N-point exact counting.
            • I.e. No approximation
            • The majority of the time is taken in binning in high-dimension.
          • Create a graph-database
            • Finding the disconnected distances
            • (Distance, Unique ID)
              • (14, 3675)
              • (17, 620)
              • (13, 342)
              • Find distance(gal 1, gal 3675)
            • (Distance, Unique ID)
              • (13, 342)
              • (17, 620)
              • (14, 3675) → Bisecting
              • Python 'where' is slow
              • Fortran loops are ok, not optimized
    • 17:45 17:55
      Discussion 10m