

Adaptive Mesh Grid (AMR) Nature of the Horizon Run 5 Simulation (HR5)

- Start simulation with low-res uniform grids
- Increase the spatial/mass resolution for dense cells
- Possible to achieve high-res for galaxies & substructures with less computational cost
- Hard to statistically compare high-res and low-res cells (especially if someone is interested in cluster outskirts or voids)
- Artifacts for shock-finding
- Gives poor visualization

Requirements for Successful High-res Reconstruction

- Continuity to nearby high-res cells
 - Easiest part --- even Gaussian smoothing with multiple smoothing length can do this.
- Conservation of fluid equation
 - Note that the value at each grid is "averaged" value over the grid volume, rather than the value "at the grid center".
 - Therefore, typical smoothing cannot properly reconstruct high-res values.
- No strange small-scale artifacts
 - Since we know there is no small-scale objects in underdense regions.
- Consistency over multiple parameters

\rightarrow Will be hard for classical ways!

Would be okay if the parameters satisfy conservation law.

What kinds of Deep Learning Methods?

#1. CNN autoencoder

(see https://keraskorea.github.io/posts/2018-10-23-keras_autoencoder/)

#2. U-Net or V-Net

(see https://arxiv.org/pdf/2008.01738.pdf)

#3. DCGAN (see <u>https://taeoh-kim.github.io/blog/image2image/</u>)

