
Vibe Coding: An Introduction

Ian J. Watson

University of Seoul

NSRI 2025 Workshop 2026-01-14

Ian J. Watson (UoS) Vibe Coding: An Introduction NSRI 2026-01-14 1 / 27



One Slide Intro to the Transformer Model

• The transformer model produces output sequence from input sequence
• Uses self-attention layers to model the dependencies between elements

of the sequences: each word is trained to "attend" to related words
• The transformer model is at the heart of modern deep learning

• This paradigm replaces the previous recurrent models which processed
single tokens at a time to produce a single context vector

• Ever since it was argued that Attention is All You Need in 2017

• The model for LLMs: you put in tokens representing some partial
piece of writing, it predicts the next token, which is used to predict the
token after, etc.

Ian J. Watson (UoS) Vibe Coding: An Introduction NSRI 2026-01-14 2 / 27



What is Vibe Coding?

• Coined by Andrej Karpathy (Feb 2025)
• Also the author of a great series on how

Transformers work

• "You fully give in to the vibes, embrace
exponentials, and forget that the code even
exists"

• Natural language → working code via LLM
• Not just autocomplete: AI writes entire

functions, files, applications
https://x.com/karpathy/status/1886192184808149383
https://karpathy.ai/zero-to-hero.html

Ian J. Watson (UoS) Vibe Coding: An Introduction NSRI 2026-01-14 3 / 27

https://x.com/karpathy/status/1886192184808149383
https://karpathy.ai/zero-to-hero.html


The Workflow

• Describe what you want in plain
English

• AI generates code, you
review/test

• Iterate: refine with follow-up
prompts

• Tools: Claude Code (CLI),
Codex, Gemini cli, etc.

• In general, real vibe coding is
done from the command line
with an agentic cli

• Agentic means that it can use
tool use, and check its work
as it goes

Ian J. Watson (UoS) Vibe Coding: An Introduction NSRI 2026-01-14 4 / 27



Why CLI Tools, Not Browser?

• Browser chat (ChatGPT, Claude web, Gemini): copy-paste
ping-pong

• You paste code → AI responds → you paste back → repeat

• IDE: → you’d just be distracted by the actual code, remember to vibe!
• CLI tools (Claude Code, Codex, Gemini CLI): direct access to files

• Reads your codebase, writes changes in place
• Runs tests, linters, builds—sees errors, fixes them
• No manual copy-paste, no context lost in translation

• The agentic loop: generate → execute → observe → fix
• AI becomes a collaborator inside your project, not outside it

• Maximal vibe coding: the Ralph Wiggum loop
• Run in a loop: complete one task to reach a goal, use another agent to

check the changes, fix the issues the agent found, repeat
• A most dangerous game. . .

• Browser is fine for questions; CLI is for getting work done
https://github.com/anthropics/claude-plugins-official/tree/main/plugins/ralph-loop

Ian J. Watson (UoS) Vibe Coding: An Introduction NSRI 2026-01-14 5 / 27

https://github.com/anthropics/claude-plugins-official/tree/main/plugins/ralph-loop
https://github.com/anthropics/claude-plugins-official/tree/main/plugins/ralph-loop


The Major Players (Trust No One)

• OpenAI (GPT, Codex): started "open" and safety-focused, now
closed-source and profit-driven

• Anthropic (Claude): safety-focused spinoff from OpenAI, but now
courting military/defense contracts

• Google (Gemini): powerful models (but Opus 4.5 still best for vibes),
but Google kills products constantly—will this last?

• xAI (Grok): Elon’s venture—enough said
• All have your data, all have incentives misaligned with yours
• Use them, but don’t depend on any single one

• Its a fight for the future and not everyone should survive

Ian J. Watson (UoS) Vibe Coding: An Introduction NSRI 2026-01-14 6 / 27



"I Tried It Before, It Was Useless"

• If you tried AI coding in 2023–2024 and gave up: try again
• The latest models (basically Nov. 2025 as the inflection point) have

undergone a phase transition
• Previous generations: autocomplete on steroids, hallucinated

constantly
• Current generation: actually understands context, writes working code
• Agentic tools (Claude Code, Cursor Agent): can run commands, fix

their own errors
• Still not perfect, but now genuinely useful for real work

Ian J. Watson (UoS) Vibe Coding: An Introduction NSRI 2026-01-14 7 / 27



Warmup Use Case: Understanding Large Codebases

• AI CLI tools excel at navigating
unfamiliar code

• Example: CMSSW (CMS experiment
software, millions of lines)

• Asked: "How is the Zero Bias skim
implemented?"

• AI searched autonomously,
summarized the trigger logic

• Discovered: despite the name, Zero
Bias is biased

• Later confirmed via bunch crossing ID
distributions

• Needed correction in our background
analysis

Ian J. Watson (UoS) Vibe Coding: An Introduction NSRI 2026-01-14 8 / 27



The Testing Loop

• Vibe coding works best when the AI can
check its own work

• Give it concrete ways to verify: tests,
type checks, linters, access to browser

• The AI can build these checks itself,
then use them to iterate

• Tight feedback loop: generate → test
→ fix → repeat

• Without this, you’re just generating
code and hoping

• AI is very good at both generating large
swathes of uneeded code, and removing
working code in order to "pass tests"

• One must be vigilant for these failure
modes, even when vibing

Ian J. Watson (UoS) Vibe Coding: An Introduction NSRI 2026-01-14 9 / 27



Managing Context

• Each session starts with a amnesiac LLM, which you fill with context
• Context window = AI’s working memory (limited!)
• Clear context when starting a new task—old context can poison new

work
• Get relevant files in early: the AI can only work with what it sees
• Keep irrelevant info out: wrong context → wrong answers
• For long tasks: summarize progress, break into sessions

Ian J. Watson (UoS) Vibe Coding: An Introduction NSRI 2026-01-14 10 / 27



Project Memory: CLAUDE.md / AGENTS.md

• Config files that persist across sessions
• Include: project structure, conventions, key commands
• Can reference other files—AI figures out when to read them
• Don’t include: session-specific details, obvious things
• AI tends to over-fill these—review and trim regularly

Ian J. Watson (UoS) Vibe Coding: An Introduction NSRI 2026-01-14 11 / 27



Skills and MCP

• Skills: reusable process knowledge (SKILL.md files)
• "How to deploy", "how to run tests", "how to make a PDF"
• Claude has built-in discovery: "make a talk" → finds the skill
• Gemini/Codex can use them too, but need explicit pointers

• MCP (Model Context Protocol): connect external data sources
• Databases, APIs, services the AI can’t otherwise access
• Useful, but not everything needs to be an MCP server

• Skills = how to do things; MCP = access to things
Simon Willison: https://simonwillison.net/2025/Oct/16/claude-skills/

Ian J. Watson (UoS) Vibe Coding: An Introduction NSRI 2026-01-14 12 / 27

https://simonwillison.net/2025/Oct/16/claude-skills/


When Does It Work Well?

• Prototyping and quick tools
• Boilerplate-heavy tasks (e.g. Deep Learning!)
• Learning new frameworks/languages
• Tasks with clear specifications
• Glue code, scripts, utilities
• Can do more complex things, but the more complex/specialized the

task, the more the human must be in the loop

Ian J. Watson (UoS) Vibe Coding: An Introduction NSRI 2026-01-14 13 / 27



Why Scientists Should Care

• We write a lot of "one-off" code
• Data processing scripts
• Plotting and visualization
• Automation of tedious tasks

• Often not our primary skill
• Time spent coding ̸= time spent on

science

Ian J. Watson (UoS) Vibe Coding: An Introduction NSRI 2026-01-14 14 / 27



Examples from HAWC: High Altitude Water Cherenkov
Observatory

• Gamma-ray observatory in
Mexico at 4100m altitude

• 300 water tanks, each with 4
PMTs

• Detects Cherenkov light from air
shower particles

• Reconstructs energy, direction,
and particle type of incoming
gamma rays

Ian J. Watson (UoS) Vibe Coding: An Introduction NSRI 2026-01-14 15 / 27



Example: Modernizing a Legacy Codebase

• Aerie: HAWC’s core software framework (~960k lines of code)
• Data I/O, reconstruction, map making, significance calculations

• Problem: depends on Python 2 and ROOT 5—increasingly hard to
build

• Vibe-coded a modernization to pixi (modern package manager)
• Replaced CMake files, rebuilt modules incrementally
• My role: check it compiles, say "keep going with the next module"
• Done over a day or two with minimal intervention

• 2383 files, 150 CMake files—all updated by Claude

Ian J. Watson (UoS) Vibe Coding: An Introduction NSRI 2026-01-14 16 / 27



Example: Deep Learning Training TUI

• Training DeepHAWC models for gamma-ray event reconstruction
• Multiple training runs with different hyperparameters
• Built a TUI (terminal UI) to compare runs:

• View loss curves across runs
• Drill into model architecture and training config for each run
• Quickly identify best performing models

Ian J. Watson (UoS) Vibe Coding: An Introduction NSRI 2026-01-14 17 / 27



Example: Batch Job Tracker

• Running inference over HAWC data: thousands of batch jobs
• Needed to manage jobs without overwhelming the batch system
• Vibe-coded a bespoke tracker with:

• SQLite database tracking job status
• Tools to query: how many jobs complete? which dates covered?
• Automatic parsing of output for event counts
• Live sky map plotting to check results as jobs finish

Ian J. Watson (UoS) Vibe Coding: An Introduction NSRI 2026-01-14 18 / 27



Sky Maps from the Batch Tracker

Sky map generated incrementally as batch jobs completed

Ian J. Watson (UoS) Vibe Coding: An Introduction NSRI 2026-01-14 19 / 27



The Plotting Was Also Vibe Coded

• Claude set up astropy/matplotlib/healpy in a uv toml

• Learned our output data format, filled HEALPix maps

• Wrote simple background estimate + significance calculator

• GBs of data → map in minutes (full HAWC pipeline: days + specialized
IRFs)

Ian J. Watson (UoS) Vibe Coding: An Introduction NSRI 2026-01-14 20 / 27



The Good

• Dramatically speeds up prototyping
• Great for exploring unfamiliar libraries
• Handles boilerplate you’d otherwise copy-paste
• Can explain code as it writes

• If you are learning, do this constantly, ask it
why its making the changes it is, if there is a
line of code that doesn’t make sense to you, or
feature you haven’t used, make it explain it

Ian J. Watson (UoS) Vibe Coding: An Introduction NSRI 2026-01-14 21 / 27



The Bad

• Hallucinations: confident but wrong
• Non-existent APIs, incorrect syntax

• "They lie, but not on purpose—they just want
to make you happy"

• Security blind spots, unnecessary dependencies
• Can produce subtly buggy code
• Struggles with complex, multi-step requests

• Less true of the more recent models
https://refact.ai/blog/2025/top-10-tips-for-conscious-vibe-coding/

Ian J. Watson (UoS) Vibe Coding: An Introduction NSRI 2026-01-14 22 / 27

https://refact.ai/blog/2025/top-10-tips-for-conscious-vibe-coding/


Trust But Verify

• Always review generated code
• Test before deploying
• Be especially careful with:

• Security-sensitive code
• Numerical/scientific calculations
• Code that modifies data

• The AI is a junior collaborator, not an
expert

• "If you can’t verify it, don’t use it"
• Andrew Ng: telling beginners "don’t

learn to code, AI will do it" is "some of
the worst career advice ever given"
https://en.wikipedia.org/wiki/Vibe_coding

Ian J. Watson (UoS) Vibe Coding: An Introduction NSRI 2026-01-14 23 / 27

https://en.wikipedia.org/wiki/Vibe_coding


Let’s Build Something

• Janggi (Korean Chess) in the browser
• Goal: playable game from scratch
• Watch the vibe coding workflow in action

Ian J. Watson (UoS) Vibe Coding: An Introduction NSRI 2026-01-14 24 / 27



Demo

Live Demo

Ian J. Watson (UoS) Vibe Coding: An Introduction NSRI 2026-01-14 25 / 27



This Talk Made Itself

• The tools used to build this talk were
themselves vibe-coded:

• Skill for creating new talks
(directory structure, templates)

• Skill for generating illustrations
(Gemini MCP integration)

• CLAUDE.md with project
conventions

• Even these slides were built in a vibe
coding session

• But then polished by hand,
human-AI collaboration

• It’s turtles all the way down

Ian J. Watson (UoS) Vibe Coding: An Introduction NSRI 2026-01-14 26 / 27



The Buck Stops With You

• Vibe coding: describe → generate →
iterate

• Excellent for scientific tooling and
prototypes

• Verify everything, especially
calculations

• Great force multiplier, not a
replacement for understanding

• "The AI did it" is not an excuse

• "I trust Claude/Gemini/Codex" is not
verification

• When correctness matters:
understand the code

• When it doesn’t: feel the vibes

The AI is a tool. You are the scientist.

YOU are responsible for your code

Ian J. Watson (UoS) Vibe Coding: An Introduction NSRI 2026-01-14 27 / 27


	Introduction
	Applications in Science
	Tips and Warnings
	Live Demo
	Wrap-up

