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Gamma Rays in High-Energy Astrophysics

e Gamma rays play a crucial role in

AGNs, SNRs, GRBs...

multi-messenger astronomy.

e Unlike cosmic rays, gamma rays from
astrophysical source are not deflected by
interstellar magnetic fields therefore can
be traced back to the accelerator.

e The High-Altitude Water Cherenkov
Gamma-Ray Observatory (HAWC) is a

facility designed to observe gamma rays.

Multi-messengers from hadronic accelerators
(credit J.A. Aguilar & J. Yang).



HAWC overview
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Location: HAWC is located on the flanks of the
Sierra Negra volcano near Puebla, Mexico at an
altitude of 4100 meters.

Detector Array: 300 Water Cherenkov Detectors
(WCDs or "tanks") covering ~22,000 m?. Each
tank contains 4 Photomultiplier Tubes (PMTs).
Water Cherenkov Detector: Detects cherenkov
light produced by charged particles from
Extensive Air Shower (EAS).

Operation: Wide Field-of-View (~2 sr), High
Duty Cycle (>95%), ~25 kHz trigger rate.
Sensitive to gamma rays and cosmic rays from
~300 GeV to >100 TeV.




Extensive Air Shower (EAS

Development of gamma-—ray air showers
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HAWC Standard Cut (SC) : Physics-based
hard cut

e HAWC Standard Cut (SC) is defined as hard cut on two engineered feature sensitive to
gamma/hadron separation.
e LDFChi2

o Reduced 2 from fitting the measured photo-electron (PE) distribution with a lateral distribution function (LDF) based on a modified
Nishimura—Kamata—Greisen (NKG) model, which describes the particle density of gamma-ray-induced air showers.

o Lower value of LDFChi2 indicates better fit to a gamma-ray shower particle distribution.
e Compactness

o Compactness = Nhit/ Q,,
o Nhit is the number of hit PMTs during the shower.
o Q,, is the largest effective charge outside a radius of 40 meters from the shower core.

o Compactness is smaller for hadronic events.



HAWC Standard Multilayer Perceptron (MLP)
: Feature-based neural network

Input Hidden Layer Output
e Afast and computationally low-cost neural network Layer Layer

which contains 4 layers of neurons.
o Input layer accepts 20 input features.
o Two hidden layers which take 128, 64 neurons, respectively.
o Output layer is a single neuron with sigmoid activation.

e Input Features

o Energy-related : fHit, fTank, NNEnergy, GPEnergy, LDFAmp
o Shape-related : LDFChi2, PINCness, Compactness, fAnnulusQ0-Q9
o Directional and positional features : R, Zenith

e It has higher performance than SC, adopted in the

standard HAWC data analysis pipeline this year.
Scheme of MLP




DeepHAWC : Deep Learning Approach
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Shift from engineered features to end-to-end learning. We
developed a custom attention-based network to process raw
PMT data.

Raw PMT hit information (time ti, charge ci) from the each PMT
is transformed into a PMT-embedding vector.

Learnable per-PMT adjustments implicitly encode detector
geometry and calibration.

Iterative shower representation refinement: A shower
representation vector interacts with PMT-embedding vector via
attention mechanisms over several steps.

After all, deep learning model does feature extraction by itself.
Shower representation vector is processed by final MLP head,

then returns a gamma/hadron classification score.



Median Energy
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Efficiency / Q factor

Efficiency and Q-factor (on array)
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Conclusion

e We developed an optimized attention-based network for HAWC gamma/hadron separation.
e We achieved significant improvement over HAWC standard analysis with higher AUC & higher

Q-factor especially significant in lower energy levels.

e This deep learning approach offers enhanced sensitivity for HAWC science.
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Shower Reconstruction Performance
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e Assessed the performance of our

attention-based architecture for
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reconstructing key air shower parameters.

e Parameters Reconstructed:

o Shower radius

o Arrival Direction (Azimuth, Zenith Angle)

On main-array events
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e Results: The model demonstrates improved
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Scaling Law
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Scaling Law

Scaling with Model Size
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Scaling Law
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Scaling Law
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Scaling Laws: Model performance typically
improves (lower test loss) with more
parameters (N) or compute (C), often
following power laws (L o< Na, L oc C™),
Our models follow this trend — test loss
decreases as size/compute increases.

For any number of blocks, the shower
representation vector size follow a sequence
that starts at 16 and doubles at each step,
such as 16, 32, 64, and so on.



Efficiency and Q factor (Off array)
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HAWC Standard Approach & Challenges

Development of gamma-—ray air showers
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Standard HAWC Reconstruction:

o Processes PMT data to estimate shower properties
(e.g., arrival direction, core location, energy proxies).

o Applies hard cuts or use MLP on parameters
sensitive to gamma’/hadron classification.

o Cuts are optimized for each fHit bins depending on
what fraction of PMTs were triggered during the
event. It is sensitive to true energy of a source
photon.

Our Deep Learning Goal

o Develop end-to-end models potentially enhancing
standard reconstruction methods by learning optimal
features directly from raw PMT responses.

o Improved gamma/hadron classification.



