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Gamma Rays in High-Energy Astrophysics

● Gamma rays play a crucial role in 

multi-messenger astronomy.

● Unlike cosmic rays, gamma rays from 

astrophysical source are not deflected by 

interstellar magnetic fields therefore can 

be traced back to the accelerator.

● The High-Altitude Water Cherenkov 

Gamma-Ray Observatory (HAWC) is a 

facility designed to observe gamma rays.
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Multi-messengers from hadronic accelerators 
(credit J.A. Aguilar & J. Yang).
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● Location: HAWC is located on the flanks of the 
Sierra Negra volcano near Puebla, Mexico at an 
altitude of 4100 meters.

● Detector Array: 300 Water Cherenkov Detectors 
(WCDs or "tanks") covering ~22,000 m². Each 
tank contains 4 Photomultiplier Tubes (PMTs).

● Water Cherenkov Detector: Detects cherenkov 
light produced by charged particles from 
Extensive Air Shower (EAS).

● Operation: Wide Field-of-View (~2 sr), High 
Duty Cycle (>95%), ~25 kHz trigger rate. 
Sensitive to gamma rays and cosmic rays from 
~300 GeV to >100 TeV.

HAWC overview
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Extensive Air Shower (EAS)
● Both gamma ray and cosmic ray 

produce EAS in the atmosphere.

● Gamma ray shower
○ Develops an cascade of electromagnetic 

(EM) particles through an alternating cycle 

of pair production and bremsstrahlung.

○ Almost pure EM shower.

○ Compact, symmetric around shower core.

● Cosmic ray shower
○ Rich with pions, muons, other hadronic 

secondaries.

○ High transverse momentum of hadronic 

secondaries leads to scattered 

high-charge hits far from the air shower’s 

core.
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Simulated Gamma-Ray Event

~1:1000

Simulated Cosmic-Ray Event

Images reproduced from Cui (2009), “Cosmic Rays and High-Energy Gamma Rays”, NASA/IPAC 
Extragalactic Database (NED), https://ned.ipac.caltech.edu/level5/Sept09/Cui/Cui1.html

https://ned.ipac.caltech.edu/level5/Sept09/Cui/Cui1.html
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● HAWC Standard Cut (SC) is defined as hard cut on two engineered feature sensitive to 

gamma/hadron separation.

● LDFChi2
○ Reduced χ² from fitting the measured photo-electron (PE) distribution with a lateral distribution function (LDF) based on  a modified 

Nishimura–Kamata–Greisen (NKG) model, which describes the particle density of gamma-ray-induced air showers.

○ Lower value of LDFChi2 indicates better fit to a gamma-ray shower particle distribution.

● Compactness
○ Compactness = Nhit / Q40

○ Nhit is the number of hit PMTs during the shower.

○ Q40 is the largest effective charge outside a radius of 40 meters from the shower core.

○ Compactness is smaller for hadronic events.

HAWC Standard Cut (SC) : Physics-based 
hard cut
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HAWC Standard Multilayer Perceptron (MLP) 
: Feature-based neural network

● A fast and computationally low-cost neural network 

which contains 4 layers of neurons.
○ Input layer accepts 20 input features.

○ Two hidden layers which take 128, 64 neurons, respectively.

○ Output layer is a single neuron with sigmoid activation.

● Input Features
○ Energy-related : fHit, fTank, NNEnergy, GPEnergy, LDFAmp

○ Shape-related : LDFChi2, PINCness, Compactness, fAnnulusQ0–Q9

○ Directional and positional features : R, Zenith

● It has higher performance than SC, adopted in the 

standard HAWC data analysis pipeline this year.
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Scheme of MLP
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DeepHAWC : Deep Learning Approach
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● Shift from engineered features to end-to-end learning. We 

developed a custom attention-based network to process raw 

PMT data.

● Raw PMT hit information (time tᵢ, charge cᵢ) from the each PMT 

is transformed into a PMT-embedding vector.

● Learnable per-PMT adjustments implicitly encode detector 

geometry and calibration.

● Iterative shower representation refinement: A shower 

representation vector interacts with PMT-embedding vector via 

attention mechanisms over several steps.

● After all, deep learning model does feature extraction by itself.

● Shower representation vector is processed by final MLP head, 

then returns a gamma/hadron classification score.
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ROC curve

● Fhit bin is a proxy for the primary particle’s 

energy, defined by the fraction of PMTs that 

records light during the event.

● DeepHAWC significance improves 

gamma/hadron separation especially in lower 

energy levels.
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(A. Albert et al., 2024, arXiv:2405.06050)
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Efficiency / Q factor
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Efficiency & Q factor
DeepHAWC and MLP optimized to 80% gamma-ray efficiency

● Q-factor = 
○ A standard metric of significance improvement.

● DeepHAWC achieves consistently higher 

Q-factors and better background rejection, 

indicating improved significance, except the 

highest energy level.
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● We developed an optimized attention-based network for HAWC gamma/hadron separation.

● We achieved significant improvement over HAWC standard analysis with higher AUC & higher 

Q-factor especially significant in lower energy levels.

● This deep learning approach offers enhanced sensitivity for HAWC science.

Conclusion
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Backup
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Shower Reconstruction Performance

● Assessed the performance of our 

attention-based architecture for 

reconstructing key air shower parameters.

● Parameters Reconstructed:
○ Shower radius

○ Arrival Direction (Azimuth, Zenith Angle)

○ Primary Particle Energy

● Results: The model demonstrates improved 

reconstruction accuracy compared to 

standard HAWC methods in all fhit bin range.
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Scaling Law
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● Scaling Laws: Model performance typically improves 

(lower test loss) with more parameters or compute, 

often following power laws (L ∝ N⁻ᵃ, L ∝ C⁻ᵇ).

● In this plot, for any number of blocks, the shower 

representation vector size follow a sequence that starts at 

16 and doubles at each step, such as 16, 32, 64, and so 

on.

● Our model's performance follows an U-curve. As the 

model size increases, performance peaks and then 

declines. This is due to the limited size of our dataset.
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Scaling Law
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● Scaling Laws: Model performance typically 
improves (lower test loss) with more 
parameters (N) or compute (C), often 
following power laws (L ∝ N⁻ᵃ, L ∝ C⁻ᵇ).

● Our models follow this trend – test loss 
decreases as size/compute increases.

● For any number of blocks, the shower 
representation vector size follow a sequence 
that starts at 16 and doubles at each step, 
such as 16, 32, 64, and so on.
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Scaling Law
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Efficiency and Q factor (Off array)
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●

● Standard HAWC Reconstruction:

○ Processes PMT data to estimate shower properties 

(e.g., arrival direction, core location, energy proxies).

○ Applies hard cuts or use MLP on parameters 

sensitive to gamma/hadron classification.

○ Cuts are optimized for each fHit bins depending on 

what fraction of PMTs were triggered during the 

event. It is sensitive to true energy of a source 

photon.

● Our Deep Learning Goal

○ Develop end-to-end models potentially enhancing 

standard reconstruction methods by learning optimal 

features directly from raw PMT responses.

○ Improved gamma/hadron classification.

HAWC Standard Approach & Challenges
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Simulated Gamma-Ray Event

~1:1000
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