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Data set MICCAI202:
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4069 patients _Nodule ID
- Coordinates 6163 samples
- Malignant / Benign
64x64x64
162x512x512
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Problem definition and challenges Mlcc“;%gg

Problem
- Binary classification of malignant nodules in lung CT scans.

/- ~N / Malignant?
ﬁ SN Al algorithm \

Challenges . J Benign?
- The complexity of 3D data

- 3D datasets exhibit more complex spatial features than 2D 1mages.
- Data imbalance

- The dataset exhibits significant class imbalance, with only 555 malignant cases out of
6,163 total images (approx. 9%).

University of Seoul MICCAI 2025 LUNA25




2 AT\
Overview MICCAI2025
Lo
- Data Preprocessing
- Model architecture
- Inference strategy
- How to evaluate Model
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Data preprocessing
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s I
Hounsfield Unit (HU) value MICCAIZ02
Substance HU
Air -1000
Lung -500
Water 0
Blood 30~45 Soft tissue
Soft tissue 100~300
TR oon-swostmi
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Data preprocessing MIBGAI;%@

Our method

Upscaling nodule patches from 64x64x64 to 64x128x128

The I3D model reduces unnecessary down sampling in deeper layers and mitigates

excessive loss of spatial detail.
Although simple, the approach is effective and deliberately designed.

up scaling

——-

64x64x64 64x128x128
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Data preprocessing

Our method

y- and z-axes flips and 90° rotation
These augmentations aim to enhance
model robustness.

These augmentation choices are heuristic.
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Model architecture
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Model architecture : Multi-task learning M|03A|2U25

13D model

~

192%32x3

480x32x1

Input image
3x64x128x1

28

192x3 x3px3

—_— . el
x / 64x32x64x

Classification model (main task)

- An I3D model pre-trained on the Kinetics-400
dataset

- Final classification 1s performed using
global average pooling and an MLP head.

Segmentation mask
1x64x64x64

v /3t

Segmentation model (auxiliary task)

\U

480)&?_.:;15 1

- To integrate 13D features,
we use U-Net-like skip connections

% DICE Loss * lambda

104844

/ I\Illltl task Loss

832x16x8x8

The tasks are mutually complementary.
nodule type <« shape
(classification) (segmentation)

1024x1x 11
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Inference strategy
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Inference strategy MIBBAI;%@

Input image

3641285128 Goal: Reduce model bias and maximize generalization
performances.

- Three 1dentical models were trained independently,
each initialized with a random seed.

- The final prediction was determined using soft voting.
(Soft voting: weighted sum of the predicted probabilities
of each model)

Votmng

Prediction Final
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Model evaluation
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Experimental setup MIBBAI;E?Q

Goal

To address severe data imbalance and ensure reliable validation

Dataset
6157 CT patches with 554 malignant from the LUNA25 challenges

(excluding 6 samples without masks)
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Splitting method

/A— DataTsetA 4\

11 554 malignant samples
+ 554 benign samples
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— = Validation set(C) | =
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Randomly sampled
almost 200 samples
from Dataset A
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Dataset B

MICCAI202:
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The remaining benign samples
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= = = =| Training set (A-C) UB

The samples from

the rest of A + the entire of B
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Additional training method MICCAI202:

Lo
- EMA(Exponential Moving Average) for weight updates
-ty =a- 0t + (1 — a) -0t (t: iteration)
- AMP(Automatic Mixed Precision) training
- In calculation, using FP32 & FP16 mixing
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Hyperparameters

University of Seoul

training config our model
weight init (aux) He-normal
optimizer Adam

base learning rate 1x10~4
weight decay 5x 1074

optimizer momentum
batch size

B1 =0.9, 52 =0.999
32

training epochs 15

EMA 0.998

lambda (for aux loss) | 0.5
MICCAI 2025
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Rank
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1st €3 thomas.buddenkotte & vl 31 July 2025 0.7807 [
2nd 15 vaicebine & Pulse-3D 25 July 2025 0.7466 & [ ]
3rd £ doobee & (MClab) NoduleMC €) 28 July 2025 0.7448 & [
Ath zry1054 & (LUNA Summer) FT 31 July 2025 0.7401 & [
5th % mx54039q e’ (LUNA-Seeker) LUNA-PN9 1 Aug. 2025 0.7336
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Q&A MICCAI2025
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REPUBLIC ¢ OF KOREA

Thank You ©
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