

Search for Supersymmetry in the VBF 0-Lepton Channel at the CMS Experiment and Deep Learning-Based Particle Identification in the Calorimeter

YunJae Lee

Supervisor: Jason Sanghun Lee

University of Seoul

Contents

- SUSY search in VBF 0-lepton
 - O Introduction
 - Supersymmetry (SUSY)
 - Compact Muon Solenoid (CMS)
 - O Event selection
 - O Background estimation
 - O Results

- Particle Identification
 - O Introduction
 - O Dual-readout calorimeter
 - O Simulation study
 - O Deep learning
 - O Results

Introduction

- The Standard Model describe universe with fermion and Boson.
 - Fermion as matter Boson as force carrier
- Electroweak force higgs mechanism
- There are limitation also,
 - Higgs mass can reach Planck scale 10¹⁹ GeV in the Standard Model.
 - Hierarchy problem
 - There is no Dark matter candidate
 - Neutrino mass is not zero

Supersymmetry (SUSY)

- Fermions (spin 1/2) → Bosonic Superpartners(spin 0)
- Bosons (in SM) → Fermionic Superpartners:
- W/Z Bosons (spin 1) \rightarrow Wino/Zino (spin 1/2).
- Higgs Boson (spin 0) \rightarrow Higgsino (spin 1/2).
- SUSY propose light Higgs mass
 - quantum correction is cancelled by its superpartner particle
- Lightest Supersymmetric Particle as dark matter candidate
- Unifying forces at extreme energy.

Supersymmetry (SUSY)

- Compressed mass spectrum: $\Delta m = m(\tilde{\chi}_2^0) m(\tilde{\chi}_1^0) \text{ or } m(\tilde{\chi}_1^{\pm}) m(\tilde{\chi}_1^0)$
 - Soft final states particles
- Wino-Bino Model: Chargino-neutralino production ([~]χ±1 [~]χ02) followedby decays through off-shell W and Z bosons
- Stau coannihilation Model
 - \circ $\tilde{\tau}$ nearly degenerate with $\tilde{\chi}_1^0$, decays into low-energy τ
- Higgsino Model: Nearly mass-degenerate x±1 , x02, and x01 states
- background event. Z + jets, W + jets, QCD multijets, single top, top quark pairs, higgs and diboson events

Compact Muon Solenoid (CMS)

rough CN

- Tracker
 - Reconstruct charged particle trajectories estimate momentum with magnetic field
 - Trajectory also reconstruct primary vertex and secondary vertex
- ECAL
 - Measure electron and photon energy.
- HCAL
 - Measure hadron energy to reconstruct jet
 - With tracker, electron photon charged hadron and neutral hadron identified
- Muon system
 - Muon track measured at outer detector
- Trigger
 - Data reduction 1/400 event which possibly having physical event.

SUSY search in VBF 0-lepton Ch.

- Event selection strategies
 - Quiet central region and large \vec{p}_T^{miss} .
 - VBF topology at jet selection.
 - 0-lepton channel suppress leptonic background
- Rely on jet kinematic variables
 - Dijet angle, dijet invariance mass, missing energy direction
 - Distinguished with QCD and top events

Step	Object	Selection Cuts
Central	Trigger	HLT_PFMETNoMu120_PFMHTNoMu120_IDTight
	e veto	$N(e) = 0, \ p_{\rm T}(e) > 5 \ {\rm GeV}, \ \eta(e) < 2.1, \ I_{rel} < 0.15,$
		medium cut-based ID
	μ veto	$N(\mu) = 0, \ p_{\rm T}(\mu) > 3 \ {\rm GeV}, \ \eta(\mu) < 2.1, \ I_{rel} < 0.15,$
		tight particle-flow ID
	τ veto	$N(\tau) = 0, \ p_{\rm T}(\tau) > 20 \ { m GeV}, \ \eta(\tau) < 2.1,$
		tight anti- e/μ discrimination, prong = 1 or 3 (HPS)
	b-jet veto	$N(b) = 0, p_T(b) > 30 \text{ GeV}, \eta(b) < 2.4,$
		medium DeepCSV WP
	E_{T}^{miss}	$E_{\rm T}^{\rm miss} > 250 {\rm GeV}$
	QCD rejection	$\label{eq:phi} \begin{array}{l} \Delta\phi(E_{\rm T}^{\rm miss},j) _{\rm min}>0.5, \ p_{\rm T}(j)>30 \ GeV, \ \eta(j) <4.7, \\ {\rm loose \ ID \ (2016)/ \ tight \ ID \ (2017-2018)} \end{array}$
VBF	Jet selection	$N(j) \ge 2$, $p_T(j) > 30$ GeV, $ \eta(j) < 4.7$,
		loose ID (2016) / tight ID (2017–2018)
	Dijet selection	$\Delta \eta(j_1, j_2) > 3.8, \ \eta(j_1) \cdot \eta(j_2) < 0, \ m_{jj} > 500 \ \text{GeV}$

Data

- CMS Run 2 13 TeV pp collision luminosity(2016,2017,2018)
- Data samples
 - primary datasets MET, muon, electron, tau
- MC simulation
 - O MADGRAPH, POWHEG, PYTHIA8
 - Background MC: Standard Model backgrounds which make \vec{p}_T^{miss} and jets
 - Z + jets, W + jets, QCD multijets, single top, top quark pairs, diboson events.
 - Signal MC: minimal supersymmetric extension of the SM (MSSM)
 - Wino-bino, stau coannihilation, Higgsino

$Z \rightarrow \upsilon \upsilon$ background

- Z boson modeling discrepancy at high p_T.
- Data/MC correction by p_T at Z+jet dominated control region and applied to Z+jet MC background.
- Transfer scale factor from each control region apply correction effect.

 $SF_{BG}^{Cut} = \frac{N^{Cut}(Data) - \sum N_{nonBG MC}^{Cut}}{N_{BG MC}^{Cut}}$ $N_{BG}^{SR} = N_{BG MC}^{SR}(central + VBF) \cdot SF_{BG}^{central} \cdot SF_{BG}^{VBF}$

Correction applied

Step	Object	Selection Cuts
Central	Trigger	HLT_IsoMu24 (2016, 2018), HLT_IsoMu27 (2017)
	μ selection	$N(\mu) \geq 2, \; p_{\rm T}(\mu) > 30 \; {\rm GeV}, \; \eta(\mu) < 2.1, \; I_{rel} < 0.15,$ tight particle-flow ID
	Additional μ veto	$N(\mu)=0,~3~{\rm GeV}< p_{\rm T}(\mu)<30~{\rm GeV},~ \eta(\mu) <2.1,~I_{rel}<0.15,~{\rm tight}~{\rm particle-flow~ID}$
	e veto	$N(e)=0, \; p_{\rm T}(e)>5 \; {\rm GeV}, \; \eta(e) <2.1,$ medium cutbased ID
	τ veto	$N(\tau) = 0$, $p_{\rm T}(\tau) > 20$ GeV, $ \eta(\tau) < 2.1$, tight anti- e/μ discrimination, prong = 1 or 3 (HPS), $\Delta R(\tau_h, e/\mu) >$ 0.3, DeepTau2017v2p1, tight isolation
	b-jet veto	$N(b)=0, \ p_{\rm T}(b)>30$ GeV, $ \eta(b) <2.4,$ medium DeepCSV working point
	$E_{\rm T}^{\rm miss}$	$E_{T}^{miss} > 250 \text{ GeV}$
	QCD rejection	$\label{eq:phi} \begin{array}{l} \Delta\phi(E_{\rm T}^{\rm miss},j) _{\rm min}>0.5, \ p_{\rm T}(j)>30 \ GeV, \ \eta(j) <4.7, \\ {\rm loose \ ID \ (2016)/ \ tight \ ID \ (2017-2018)} \end{array}$
VBF	Jet selection	$N(j) \geq 2, \; p_{\rm T}(j) > 30 \; {\rm GeV}, \; \eta(j) < 4.7, \; {\rm loose \; ID} \; (2016)$ / tight ID (2017–2018)
	Dijet selection	$\Delta \eta(j_1, j_2) > 3.8, \ \eta(j_1) \cdot \eta(j_2) < 0, \ m_{jj} > 500 \text{ GeV}$

$W \rightarrow lv$ background

- W boson modeling discrepancy at high p_{T} .
- Data/MC correction by p_T at Z+jet dominated control region and applied to W+jet MC background.

35.92 fb⁻¹ (13 TeV)

Z+Jets

W+Jets

Data

800

p_T(µ) [GeV]

1000

Bkg. Stat. Err

tī

Transfer scale factor from each control region apply correction effect.

 $SF_{BG}^{Cut} = \frac{N^{Cut}(Data) - \sum N_{nonBG MC}^{Cut}}{N_{BG MC}^{Cut}}$ $N_{BG}^{SR} = N_{BGMC}^{SR}(central + VBF) \cdot SF_{BG}^{central} \cdot SF_{BG}^{VBF}$

EWK V

Rares

Diboson

Sinale tor

600

Step Object Selection Cuts HLT.IsoMu24 (2016, 2018), HLT.IsoMu27 (2017) Trigger μ selection $N(\mu) = 1$, $p_T(\mu) > 30$ GeV, $|\eta(\mu)| < 2.1$, $I_{rel} < 0.15$. 60 GeV $< m_T(\mu, p_T^{miss}) < 100$ GeV, tight particle-flow ID Central $N(\mu) = 0$, 3 GeV < $p_T(\mu)$ < 30 GeV, $|\eta(\mu)| < 2.1$ Additional µ veto $I_{rel} < 0.15$, tight particle-flow ID N(e) = 0, $p_T(e) > 5$ GeV, $|\eta(e)| < 2.1$, medium cute veto based ID τ veto $N(\tau) = 0$, $p_T(\tau) > 20$ GeV, $|\eta(\tau)| < 2.1$, tight anti- e/μ discrimination, prong = 1 or 3 (HPS), $\Delta R(\tau_h, e/\mu)$ 0.3, DeepTau2017v2p1, tight isolation b-jet vete N(b) = 0, $p_T(b) > 30$ GeV, $|\eta(b)| < 2.4$, medium DeepCSV working point $E_{\rm T}^{\rm min}$ $E_{T}^{miss} > 250 \text{ GeV}$ QCD rejection $|\Delta \phi(E_T^{\text{miss}}, j)|_{\min} > 0.5, p_T(j) > 30 \ GeV, |\eta(j)| < 4.7.$ loose ID (2016)/ tight ID (2017-2018) $N(j) \ge 2$, $p_T(j) > 30$ GeV, $|\eta(j)| < 4.7$, loose ID (2016) Jet selection VBF tight ID (2017-2018) Dijet selection $\Delta \eta(j_1, j_2) > 3.8$, $\eta(j_1) \cdot \eta(j_2) < 0$, $m_{jj} > 500 \text{ GeV}$

400

CMS Private work

Events

10⁶

104

10²

100

1.0

0.5

6.1 MC

QCD multijet background

• QCD background MC estimation performed by ABCD method at Data – MCnonQCD

A:B=C:D → $A = B * \frac{c}{D}$ (While p_T^{miss} and $|\Delta \phi(p_T^{miss}, j)|_{min}$ are uncorrelated) Inverted cut for BCD region Closure test A'B'C'D' region inside C and D 2016 – transfer factor applied $A = \epsilon^{VBF} \frac{B^{pre}C^{pre}}{D^{pre}}, \epsilon^{VBF} = \frac{B^{VBF}}{B^{pre}}$ QCD A 2016 = 9699.121+/-64.478 2% error 2017,2018 $A = \frac{B^{VBF}C^{VBF}}{D^{VBF}}$ QCD A 2017 = 38553.26+/-167.53 9% error QCD A 2018 = 45529.63+/-138.39 13% error

Signal strength

13 June 2025

Particle identification in calorimeter

- Needs for advanced calorimeter precisely reconstruct jet energy and missing energy.
 - Calorimeter measuring particles energy through shower which is crucial to reconstruct properties.
- Dual-readout calorimeter for future collider need accurate particle identification because it is unsegmented(not ECAL,HCAL).
 - charged particle need to be identified whether electron or hadron.
- Deep learning model is proposed for particle identification in the dual-readout calorimeter.
 - Expand PID for π^0 in addition to EM and hadron.
 - Better energy reconstruction based PID.

Particle Shower

- Cascade of particles produced when a high-energy particle interacts with the material
 - Electromagnetic (EM) shower Braking radiation and electron pair production
 - Hadronic shower Strong interaction between hadrons
- Fluctuation of Hadronic component and EM component
 - Nonlinearity in energy, nuclear binding energy, invisible particles(low momentum neutron, muon, neutrino)
 - Neutral pion increase at higher energy
- Shower shape helps to determine type of incident particle.
 - Shower profile of photon pair and other EM shower is different.
 - hadron and electron should be identified by shower shape and energy proportion.

Distributions of signal for shower components¹⁾

Dual-Readout Calorimeter

- Dual-readout calorimeter has two different, Scintillation and Cerenkov fibers components.
 - Scintillation fibers react to both EM and hadronic particle, Cerenkov fiber reacts to EM particle only.
- Dual-readout calorimeter propose great hadronic energy resolution.
 - Ratio of hadronic component and EM component h/e is differed by Scintillation part $(h/e)_S$ and Cerenkov part $(h/e)_C$.
 - $f_{em} = 1$ for EM shower, $f_{em} < 1$ for hadron shower

 $f_{\rm em} = \frac{(h/e)_C - (C/S)(h/e)_S}{(C/S)[1 - (h/e)_S] - [1 - (h/e)_C]}$

• Precise hadronic shower energy correction

$$E = \frac{S - \chi C}{1 - \chi}$$
, (χ : dual-readout correction constant)

Signal is calibrated with electron of known Energy E. Cerenkov signal is smaller than scintillation signal with hadron showers.

Simulation setup

- Particle generated around interaction point toward calorimeter.
 - 2meter Copper absorber unit structure.

- Fibers are implanted longitudinally.
 - Readouts count light inside fiber
 - Signal is digitized by SiPM simulation.
- Simulation performed by GEANT4.

Preprocessing of waveform

- Waveform output after SiPM signal simulation and digitization.
- Inverse Fourier transform to reconstruct raw deposit-x(t) from signal waveform-y(t).
 - Wiener filter to apply noise.
- Deconvolved signal follows shape of raw deposit. $W(f) = \frac{H^*(f)}{|H(f)|^2 + \frac{P_N(f)}{P_N(f)}}$
- Adaptive binning to reduce noise.
 - Wide bin width for low amplitude.
 - Reduce size of data conserving timing resolution.
- Amplitudes by timing are reconstructed.

Timing analysis

- Different signal timing by depth can be measured.
 - Earlier signal from rear side.
 - $\circ e^-$ peak timing as front signal timing

 $\blacksquare e^{-} \text{ shower appear just beneath.}$ $\mathsf{T} = \frac{\sum N_{pe} * t}{\sum N_{pe}} (N_{pe}: \text{ photoelectron counts})$

- Timing depth window (gate for 5ns)
 - Cherenkov

Rear
$$t_r^C$$
: 7.6_{+5ns} = $\frac{3.8}{c}$

- Front t_f^C : 11.9_{+5ns} = $\frac{1.8}{c} + \frac{2}{c_{eff}}$
- Scintillation
 - Rear t_r^S : 10.4_{+5ns} = t_r^C + 2.8
 - Front t_f^S : 14.7_{+5ns} = t_f^C + 2.8 Scintillation delay: 2.8ns

Speed of light in fiber $c_{eff} = n * \cos(0.37\pi) c$ (n = 1.5)

3D Shower reconstruction

• Shower profile in depth gives more information which is not correlated with initial energy.

 $E_{dep} =$ Energy deposit in simulation

- Energy deposit position reconstruction
 - $\circ \quad xyz_{hit} = xyz_{readout} v_{eff}(t t_r), \ v_{eff} = \frac{2m}{t_f t_r}$

Calibration

- k_c constant inside +-1%
- k_s correlated with energy
 - Signal saturated at large amplitude
 - Energy dependent calibration

 $C = k_C * \sum C_{raw}$

Energy distribution

- Initial energy E_{gen} (1-100 GeV)
 - Energy of incident particle before interaction with calorimeter.
- Deposit energy E_{dep}
 - The total energy transferred to the active material via ionization and excitation processes in GEANT4 simulation.
- Missing energy $E_{miss} = E_{gen} E_{dep}$
 - includes non-ionizing energy, nuclear binding energy losses, leakage particles

e^{-} shower energy correction E (GeV) C,S responses are linear to E_{qen} E gen 60 60 C,S combination improve precision 50 Cerenkov response (GeV) ΔE Energy reconstruction $E_{reco}^e = \frac{S+C}{2}$ 50 Ο 40 Linearity inside 0.5% 30 40 20 30 30 40 50 60 10 Scintillation response (GeV)

π^+ shower energy correction

Both C and S responses reduced for π^+ than E_{qen}

Ph.D. defense – Yunjae Lee

E (GeV)

π^+ shower missing energy

- E_{miss} mostly from nuclear binding energy losses
 - Ο Proportional to hadronic component.

C = EMS = EM + hadhad = S - C

 $E_{miss} = a * had = a * (S - C)$ (a: calorimeter variable)

Missing energy can be modeling at 1 GeV <E_{miss}<20 GeV

 $a \sim 0.5$ on current copper based dual-readout calorimeter. Ο

Need for particle identification

- Energy measurement differentiated by particle type.
 - Electromagnetic : e $\gamma \pi^0$
 - $\blacksquare \quad E_{reco}^{EM} = \frac{S+C}{2}$
 - Hadronic: $\pi^+ \text{ K}^+ \text{ K}^0_{\text{L}}$ proton neutron
 - $\blacksquare \quad E_{reco}^{had}(C,S) = \frac{S \chi C}{1 \chi}$
- Overlapped C,S region but different energy profile.
 - Limitation on EM vs hadron discrimination.
- Shower shape also differentiated by particle type.
 - Readout positions project shape.
 - Signal timing gives depth profile.

Deep learning model

- One of ML methods, which are based on neural networks
 - Neural networks model can fit arbitrary dataset to necessary output.
 - Multilayer Perceptron(MLP) is basic implementation.
- Mamba: Selective State Space model
 - State Space Models(SSMs) model local dynamics between inputs.
 - Selective gate enhance to catch relevant feature
 - Small complexity and faster than transformer.
- Model inputs
 - Cherenkov: $\sum_{C} N_{pe}$, $C_{raw}(xyz_{readout}, t, N_{pe})$, $C_{hit}(xyz_{hit}, N_{pe})$
 - Scintillation: $\sum_{S} N_{pe}$, $S_{raw}(xyz_{readout}, t, N_{pe})$, $S_{hit}(xyz_{hit}, N_{pe})$

Multilayer Perceptron

MLP without position, timing

 K_{l}^{0}

0.587 0.608

0.630 0.582 0.603

п р

0.504 0.582 0.587 K⁺

0.513 0.502 0.630 0.636 π⁺

0.970 0.985 0.981 0.996 0.996 m

K⁰ п

0.499 n 0.603 0.608 K⁰

 π^+ K^+

- Model: MLP($\sum_{C} N_{pe}, \sum_{S} N_{pe}$)
 - Model trying to mimic energy distribution of EM and Ο hadronic shower.
 - AUC close to 1 at better performance. Ο
- Performance limit of using only $\sum_{C} N_{pe}$ and $\sum_{S} N_{pe}$.
 - π^0 not discriminated. Ο
 - EM vs hadron efficiency<90% under 10GeV Ο

Model with position, timing

- Model: MLP(MLP($\sum_{C} N_{pe}$, $\sum_{S} N_{pe}$), Mamba(C_{raw} , S_{raw}), Mamba(C_{hit} , S_{hit}))
 - Model utilizes position, timing and energy.
- Position and timing improve overall performances
 - EM vs hadron efficiency>99% over 10GeV
 - \circ π^0 shower discriminated with single γ shower.
 - Efficiency>90% under 70 GeV.

π^0 Identification performance

- π^0 vs γ performance decrease over 80 GeV.
 - Copper Molière radius $R_M = 15.68mm$
 - Gaussian radius $\sigma = \frac{R_M}{\sqrt{2 \ln \frac{1}{0.1}}} \approx 7.3 mm$ (5 fiber gap)

Two shower closer than radius are overlapped.

DL energy reconstruction

Better energy reconstruction than dual-readout energy correction method

Summary

- SUSY search at VBF 0-lepton channel in CMS experiment study has performed.
- Separated energy reconstruction study has performed for electromagnetic shower and hadronic shower.
 - 3D shower profile is reconstructed timing analysis.
 - Energy dependent correction for better initial energy reconstruction.
- Deep learning implementation has been studied to extend particle identification.
 - Identification among EM(e^- , γ) and hadronic and π^0 shower.
 - Able to reconstruct initial energy and missing energy more accurately.

Backups

Simulation setup

- SiPM(Silicon Photomultiplier) readouts count optical photon at end of each fiber.
 - Ο Fast simulation algorithm for photon propagation inside fiber.
- Particle guns simulated at center of calorimeter
 - e^{-} , γ , π^{+} , π^{0} , K^{+} , K_{L}^{0} , p, n are generated with Ο random energy in 1 - 100 GeV.
 - Incident direction cover region of $2^{\circ} \times 2^{\circ}$ ($\Delta \phi$: 0.04, Ο $\Delta\theta$: 0.04) on barrel and endcap.

800

p_T(µ⁺µ⁻) [GeV]

1000

ō

200

400

Kinematics plots – Z+Jet

90

100

110

m(µ⁺µ⁻) [GeV]

80

0.5

60

QCD multi jet background

Ph.D. defense – Yunjae Lee

Dual-readout correction

Model

- MLP(Sraw,Craw), Mamba (readout position, signal timing, amplitude, fiber type), Mamba(hit position, amplitude, fiber type)
 - 3 model combined to MLP
 - 2M parameters
- 40k dataset each particle 50 train 20 validation 30 test
- Training time 1 day(model is small mostly input lag) torch v2.5.1

MLP without position, timing

• Without position, timing

Deep learning without position, timing

